

Biogenic and anthropogenic sources of isoprene and monoterpenes and their secondary organic aerosol in Delhi, India

- 3 Daniel J. Bryant¹, Beth S. Nelson¹, Stefan J. Swift^{1a}, Sri Hapsari Budisulistiorini¹, Will S. Drysdale^{1,2},
- Adam R. Vaughan¹, Mike J. Newland^{1b}, James R. Hopkins^{1,2}, James M. Cash^{3,4}, Ben Langford³, Eiko
- Nemitz³, W. Joe F. Acton^{5c}, C. Nicholas Hewitt⁵, Tuhin Mandal⁶, Bhola R. Gurjar⁶, Shivani^{6d}, Ranu
- 6 Gadi⁶, James D. Lee^{1,2}, Andrew R. Rickard^{1,2}, Jacqueline F. Hamilton¹
- 7 1- Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York,
 8 Heslington, York, YO10 5DD, UK
- 9 2- National Centre for Atmospheric Science, University of York, Heslington, York, YO10 5DD, UK
- 10 3- UK Centre for Ecology and Hydrology, Penicuik, Midlothian, Edinburgh, EH26 0QB, UK
- 11 4- School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, Edinburgh, UK
- 12 5- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YW, UK
- 6- Department of Applied Sciences and Humanities, Indira Gandhi Delhi Technical University for
 Women, Delhi, 110006, India
- ^a now at: J. Heyrovsky Institute of Physical Chemistry, Department of Chemistry of Ions in Gaseous
 Phase, Prague, Czech Republic
- 17 ^b now at: ICARE-CNRS, 1 C Av. de la Recherche Scientifique, 45071 Orléans CEDEX 2, France
- ^c now at: School of Geography, Earth and Environmental Sciences, University of Birmingham,
 Birmingham, B15 2TT, UK
- ^d now at: Department of Chemistry, Miranda House, Delhi University, Delhi, 110007, India
- 21 Correspondence email: daniel.bryant@york.ac.uk

22 Abstract

23 Isoprene and monoterpenes emissions to the atmosphere are generally dominated by biogenic 24 sources. The oxidation of these compounds can lead to the production of secondary organic aerosol, 25 however the impact of this chemistry in polluted urban settings has been poorly studied. Isoprene 26 and monoterpenes can form SOA heterogeneously via anthropogenic-biogenic interactions resulting 27 in the formation of organosulfates (OS) and nitrooxy-organosulfates (NOS). Delhi, India is one of the 28 most polluted cities in the world, but little is known about the emissions of biogenic VOCs or the sources of SOA. As part of the DELHI-FLUX project, gas phase mixing ratios of isoprene and speciated 29 30 monoterpenes were measured during pre- and post-monsoon measurement campaigns in central 31 Delhi. Nocturnal mixing ratios of the VOCs were substantially higher during the post-monsoon 32 (isoprene: (0.65 ± 0.43) ppbv, limonene: (0.59 ± 0.11) ppbv, α -pinene: (0.13 ± 0.12) ppbv) than the 33 pre-monsoon (isoprene: (0.13 ± 0.18) ppbv, limonene: 0.011 ± 0.025 (ppbv), α -pinene: $0.033 \pm$ 34 0.009) period. At night, isoprene and monoterpene concentrations correlated strongly with CO 35 across during the post-monsoon period. This is one of the first observations in Asia, suggesting 36 monoterpene emissions are dominated by anthropogenic sources. Filter samples of particulate 37 matter less than 2.5 microns in diameter (PM2.5) were collected and the OS and NOS content 38 analysed using ultrahigh-performance liquid chromatography tandem mass spectrometry (UHPLC-39 MS²). Inorganic sulfate was shown to facilitate the formation of isoprene OS species across both 40 campaigns. Sulfate contained within OS and NOS species were shown to contribute significantly to

41 the sulfate signal measured via AMS. Strong nocturnal enhancements of NOS species were observed

- 42 across both campaigns. The total concentration of OS/NOS species contributed an average of (2.0 ±
- 43 0.9) % and (1.8 \pm 1.4) % to the total oxidised organic aerosol, and up to a maximum of 4.2 % and 6.6
- 44 % across the pre- and post-monsoon periods, respectively. Overall, this study provides the first
- 45 molecular level measurements of SOA derived from isoprene and monoterpene in Delhi and
- 46 demonstrates that both biogenic and anthropogenic sources of these compounds can be important
- 47 in urban areas.


48 1. Introduction

- 49 India is undergoing significant urbanization and industrialisation, with a rapidly increasing
- 50 population. According to the WHO, India was home to 9 out of the top 10 most polluted cities in the
- 51 world in 2020 in terms of annual mean PM_{2.5} (particulate matter less than 2.5 micrometres in
- 52 diameter) concentrations (WHO, 2018). In Delhi, the population-weighted mean PM_{2.5} was estimated
- 53 to be 209 (range: 120 - 339.5) μ g m⁻³ in 2017, over 40 times the WHO annual mean guidelines of 5
- 54 μ g m⁻³, and greater than five times India's own standard of 40 μ g m⁻³ (Balakrishnan et al., 2019). Air
- 55 pollution is estimated to cause over 1 million deaths per year in India alone (Landrigan et al., 2018).
- 56 Numerous studies have investigated PM2.5 concentrations, characteristics and meteorological effects 57 in Delhi (Anand et al., 2019; Bhandari et al., 2020; Chowdhury et al., 2004; Hama et al., 2020; 58 Kanawade et al., 2020; Miyazaki et al., 2009; Nagar et al., 2017). The key sources of PM_{2.5} identified 59 are secondary aerosol, fossil fuel combustion, municipal waste and biomass burning (Chowdhury et 60 al., 2004; Sharma and Mandal, 2017; Stewart et al., 2021b, 2021a). Previous studies have also shown 61 that alongside extremely high emissions of pollutants, regional sources and meteorology in 62 particular play an important role in high pollution events in Delhi (Bhandari et al., 2020; Sawlani et
- 63 al., 2019; Schnell et al., 2018; Sinha et al., 2014).

64 Secondary species have been shown to be significant contributors to PM1 and PM2.5 mass in Delhi, 65 with organics contributing 40-70 % of PM1 mass. (Gani et al., 2019; Shivani et al., 2019; Reyes-66 Villegas et al., 2021; Sharma and Mandal, 2017) However, limited molecular level analysis of organic 67 aerosol (OA) has been undertaken (Chowdhury et al., 2004; Elzein et al., 2020; Miyazaki et al., 2009; 68 Singh et al., 2021, 2012; Yadav et al., 2021). Kirillova et al., (2014) analysed the sources of water-69 soluble organic carbon (WSOC) in Delhi, using radiocarbon measurement constraints. The study 70 identified that 79 % of WSOC was classified as non-fossil carbon, attributed to biogenic/biomass 71 burning sources in urban Delhi (Kirillova et al., 2014), similar to other studies from India (Kirillova et 72 al., 2013; Sheesley et al., 2012). Studies across Asia, Europe and North America have also shown high 73 contributions from non-fossil sources to ambient PM concentrations in urban environments (Du et 74 al., 2014; Kirillova et al., 2010; Szidat et al., 2004; Wozniak et al., 2012). The sources of this modern 75 carbon in urban areas are poorly understood, although biomass burning is a key component (Elser et 76 al., 2016; Hu et al., 2016; Lanz et al., 2010; Nagar et al., 2017). Recently in Delhi, solid-fuel 77 combustion sources such as cow dung cake or municipal solid waste have been shown to release 78 over 1000 different organic components into the aerosol phase at emission (Stewart et al., 2021a). 79 Alongside biomass burning, one potential source of this non-fossil aerosol is biogenic secondary 80 organic aerosol (BSOA), which is formed via the oxidation of biogenic volatile organic compounds 81 (BVOCs) and subsequent gas-particle phase transfer (Hallquist et al., 2009; Hoffmann et al., 1997). 82 Isoprene is the most abundant BVOC, with annual global emissions estimates of between 350 - 800

- 83 Tg yr⁻¹ (Guenther et al., 2012; Sindelarova et al., 2014). Globally, isoprene is predominately emitted 84
- from biogenic sources, but anthropogenic sources become increasingly important in urban areas

2020; Sahu et al., 2017; Sahu and Saxena, 2015). Monoterpenes are another important BSOA
precursor, with annual global emissions estimates of between 89 and 177 Tg yr⁻¹ (Guenther et al.,
2012; Sindelarova et al., 2014). Monoterpenes while mainly biogenic, are also emitted from
anthropogenic sources such as biomass burning, cooking and fragranced consumer products (Cheng
et al., 2018; Gkatzelis et al., 2021; Panopoulou et al., 2020, 2021; Stewart et al., 2021b, 2021c; Zhang
et al., 2020).

92 Numerous studies have identified and quantified molecular level markers from isoprene and 93 monoterpenes, especially in the Southeastern-US and China (Brüggemann et al., 2019; Bryant et al., 94 2020, 2021; Hettiyadura et al., 2019; Huang et al., 2016; Rattanavaraha et al., 2016b; Wang et al., 95 2016, 2018a; Yee et al., 2020). The complex sources of isoprene and monoterpenes in highly 96 polluted urban areas make source identification difficult. As such, the SOA markers in this study will 97 be referred to as originating from isoprene or monoterpenes, but the emissions are likely from a 98 mixture of biogenic and anthropogenic sources as discussed previously. (Cash et al., 2021b; Nelson 99 et al., 2021)

100 Recent studies have started to focus on anthropogenic-biogenic interactions, whereby

101 anthropogenic pollutants such as NO_x and sulfate enhance the formation of biogenically derived SOA 102 species. Increased NO or NO₂ concentrations can lead to higher organonitrate (ON) or nitrooxy-103 organosulfate (NOS) concentrations through $RO_2 + NO$ or VOC + NO_3 pathways.(Morales et al., 2021; 104 Takeuchi and Ng, 2019) Inorganic sulfate formed from the oxidation of SO_2 plays a pivotal role in OS 105 and NOS formation (Bryant et al., 2020; Budisulistiorini et al., 2015; Glasius et al., 2018; Hettiyadura 106 et al., 2019; Hoyle et al., 2011; Xu et al., 2015). Sulfate allows the acid-catalysed uptake of gas phase 107 oxidation products into the particle phase. Both chamber and ambient studies have shown the direct 108 link between sulfate and OS concentrations (Brüggemann et al., 2020a; Bryant et al., 2020; 109 Budisulistiorini et al., 2015; Gaston et al., 2014; Lin et al., 2012; Riva et al., 2019; Surratt et al., 110 2008a; Xu et al., 2015). Yee et al., (2020) highlighted markers from both the high/low-NO isoprene oxidation pathways correlated linearly with sulfate over a large range of sulfate concentrations (0.01 111 112 - 10 μ g m⁻³) across central Amazonia during the wet and dry seasons and in the SE-US summer. They

113 conclude that the majority of isoprene oxidation products in pre-industrial settings are still expected

to be in the form of isoprene OS (OSi), suggesting that they cannot be thought of as purely a

biogenic-anthropogenic product (Yee et al., 2020).

116 In this study, offline PM_{2.5} filter samples were collected across two campaigns (pre and post-

117 monsoon) in central Delhi, alongside a comprehensive suite of gas and aerosol atmospheric

118 pollutant measurements. Filters were analysed using ultra-high performance liquid chromatography

119 tandem mass spectrometry and isoprene and monoterpene OS/NOS markers identified and

120 quantified. Isoprene and monoterpene emissions were observed to correlate strongly to

121 anthropogenic markers, suggesting a mixed anthropogenic/biogenic sources of these VOCs. OSi

122 species showed strong seasonality and strong correlations to particulate sulfate. NOS species

123 showed strong nocturnal enhancements, likely due to nitrate radical chemistry. This study is the first

124 molecular level particle phase analysis of OS and NOS markers from isoprene and monoterpenes in

125 Delhi and aims to improve our understanding of the sources of isoprene and monoterpene SOA

126 markers and their formation pathways in extremely polluted urban environments.

127 2.Experimental

128 2.1 Filter collection and site information

129 PM_{2.5} filter samples were collected as part of the Air Pollution and Human Health (APHH)-India campaign, at the Indira Gandhi Delhi Technical University for Women in New Delhi, India, (28°39'55" 130 N 77°13'56" E). The site is situated inside the third ring road which caters to huge volumes of traffic, 131 132 with a major road to the east, between the site and the Yamuna River. Two train stations are located 133 to the south and southwest of the site, and there are several green spaces locally in all 134 directions.(Nelson et al., 2021; Stewart et al., 2021c) Filters were collected during two field 135 campaigns in 2018. The first campaign was during the pre-monsoon period, with 35 filters were 136 collected between 28/05/2018 and 05/06/2018. The second campaign during the post-monsoon 137 period, 108 filters were collected between 09/10/2018 and 6/11/2018. Quartz filters (Whatman QMA, 10" by 8") were pre-baked at 550 °C for 5 hours and wrapped in foil before use. Samples were 138 139 collected using an HiVol sampler (Ecotech 3000, Victoria Australia) with selective PM_{2.5} inlet at a flow 140 rate of 1.33 m³ min⁻¹. Once collected, filters were stored in foil at -20 °C before, during and after 141 transport for UK based analysis.

142 2.2 Filter extraction

143 Using a standard square filter cutter, a section of filter was taken with an area of 30.25 cm² which 144 was then cut into roughly 1 cm² pieces and placed in a 20 mL glass vial. Next, 8 mL of LC-MS grade 145 methanol (MeOH, Optima, Fisher Chemical, USA) was added to the sample and sonicated for 45 min. 146 Ice packs were used to keep the bath temperature below room temperature, with the water 147 swapped mid-way through. Using a 5 mL plastic syringe, the MeOH extract was then pushed through 148 a 0.22 μ m filter (Millipore) into another sample vial. An additional 2 mL (2 x 1 mL) of MeOH was 149 added to the filter sample, and then extracted through the filter to give a combined extract ~ 10mL. 150 This extract was then reduced to dryness using a Genevac solvent evaporator under vacuum. The dry 151 sample was then reconstituted in 50:50 MeOH:H₂O (Optima, Fisher Chemical, USA) for analysis 152 (Bryant et al., 2020; Spolnik et al., 2018). Extraction efficiencies of 2-methyl-glyceric acid (2-MG-OS) 153 and camphorsulfonic acid were determined using authentic standards spiked onto a pre-baked clean 154 filter and recoveries were calculated to be 71 % and 99 % respectively.

155 2.3 Ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS²)


156 The extracted fractions of the filter samples were analysed using an Ultimate 3000 UHPLC (Thermo 157 Scientific, USA) coupled to a Q-Exactive Orbitrap MS (Thermo Fisher Scientific, USA) using data 158 dependent tandem mass spectrometry (ddMS²) with heated electrospray ionization source (HESI). 159 The UHPLC method uses a reversed-phase 5 μ m, 4.6 mm × 100 mm, polar end capped Accucore 160 column (Thermo Scientific, UK) held at 40 °C. The mobile phase consisted of water (A, optima grade) 161 and methanol (B, optima grade) both with 0.1 % (v/v) of formic acid (98 % purity, Acros Organics). Gradient elution was used, starting at 90 % (A) with a 1-minute post-injection hold, decreasing to 10 162 163 % (A) at 26 minutes, returning to the starting mobile phase conditions at 28 minutes, followed by a 164 2-minute hold allowing the re-equilibration of the column. The flow rate was set to 0.3 mL min⁻¹. A sample injection volume of 4 μ L was used. The capillary and auxiliary gas heater temperatures were 165 166 set to 320 °C, with a sheath gas flow rate of 45 (arb.) and an auxiliary gas flow rate of 20 (arb.). 167 Spectra were acquired in the negative ionization mode with a scan range of mass-to-charge (m/z) 50 168 to 750. Tandem mass spectrometry was performed using higher-energy collision dissociation with a 169 stepped normalized collision energy of 10,45 and 60. The isolation window was set to m/z 2.0 with a 170 loop count of 10, selecting the 10 most abundant species for fragmentation in each scan.

171 A mass spectral library was built using the compound database function in Tracefinder 4.1 General

172 Quan software (Thermo Fisher Scientific, USA). To build the library, compounds from previous

studies (Chan et al., 2010; Nestorowicz et al., 2018; Ng et al., 2008; Riva et al., 2016b; Schindelka et

174 al., 2013; Surratt et al., 2008a) were searched for in an afternoon and a night-time filter sample extract analysis using the Xcalibur software. Further details can be found in Bryant et al., 2021 and 175 the SI. Isoprene and monoterpene markers were quantified using the method in Bryant et al., 2021. 176 177 Overall uncertainties associated with calibrations, proxy standards and matrix effects were estimated. The uncertainties associated with 2-MG-OS and 2-methyl tetrol OS (2-MT-OS) were 178 179 calculated to be 58.9 % and 37.6 % respectively, mainly due to the large uncertainties in the matrix 180 correction factors. Isoprene SOA markers quantified by the average of 2-MT-OS and 2-MG-OS 181 calibrations have an associated uncertainty of 69.9 %. For monoterpene SOA species which were

182 quantified by camphorsulfonic acid, the associated uncertainty is estimated to be 24.8 %.

183

184 2.4 Supplementary measurements

185 A suite of complementary measurements were made alongside the filter collection including 186 VOCs (Stewart et al., 2021c), oxygenated-VOCs, NOx, CO, O3, SO2, HONO, photolysis rates and 187 measurements of PM₁ non-refractory aerosol chemical components with a high resolution Aerosol 188 Mass Spectrometer (HR-AMS). Detailed instrument descriptions can be found in Nelson et al., (2021). Briefly, VOCs and oxygenated-VOCs were measured via two gas-chromatography (GC) 189 190 instruments (DC-GS-FID and GC-GC-FID). NO_x was measured via a dual channel chemiluminescence 191 analyser with fitted with a blue light converter for NO₂ (Air Quality Designs Inc., Colorado) alongside 192 CO which was measured with a resonance fluorescent instrument (Model Al5002, Aerolaser GmbH, 193 Germany). O₃ was measured as outlined by Squires et al., (2020) using an ozone analyser (49i, 194 Thermo Scientific). SO₂ was measured using a 43i SO₂ analyser (Thermo scientific). High-resolution 195 aerosol mass spectrometry measurements were conducted as outlined in Cash et al., (2021). Ion 196 chromatography measurements were undertaken by the experimental approach outlined by Xu et 197 al., (2020) as part of an intercomparison study. Briefly, filter cuttings were taken from the filter and extracted ultrasonically for 30 mins in 10 mL of ultrapure water and then filtered before analysis (Xu 198 199 et al., 2020).

Meteorology data was downloaded from the NOAA Integrated Surface Database via the Worldmet R
package for the Indira Gandhi International Airport (code: 421810-99999) (Carslaw, D., accessed:
2021). The planetary boundary layer height (PBLH) was obtained from the ERA5 (ECMWF ReAnalysis
5) data product at 0.25° resolution in 1-hour time steps at the position Lat 28.625°, Lon. 77.25°. The
data for both campaigns was then selected between the start time of the first filter of that

- 205 campaign, and the end time of the last filter of the same campaign.
- 206 3. Results

207 3.1 Meteorology

208 The time series for temperature, RH, planetary boundary layer height (PBLH) and ventilation 209 coefficient (VC) across the pre- and post-monsoon campaigns are shown in Figure S1. For the pre-210 monsoon campaign, the average air temperature was (35.8 ± 4.5) °C compared to (24.7 ± 4.6) °C in the post-monsoon campaign (Table S2). The pre-monsoon campaign also showed higher average 211 212 wind speeds, with an average of (3.8 ± 1.4) ms⁻¹, compared to (1.7 ± 1.3) ms⁻¹ in the post-monsoon 213 campaign. The average RH of the pre- and post-monsoon were (39.4 ± 13.6) % and (57.3 ± 16.6) % 214 respectively, both showing similar diurnals with a minimum around mid-morning and nocturnal 215 maximum (Figure S2). The PBLH shows a similar diurnal between the two campaigns, with the 216 nocturnal boundary layer breaking down around 06:00-07:00 with a midday peak, before re-

217 establishing the nocturnal boundary layer around 19:00. The pre-monsoon PBLH has an average

218 maximum of ~2400 m compared to post-monsoon ~1700 m and a minimum of 270 m compared to 219 52 m (Figure S2). The ventilation coefficient (VC = wind speed x PBLH) has been used previously to 220 identify periods of adverse meteorological conditions and gives an idea of how stagnant atmospheric 221 conditions are and the general role of the atmosphere in the dilution of species. (Gani et al., 2019) 222 As shown in Figure S1, the conditions during the post-monsoon campaign were much more stagnant 223 than the pre-monsoon campaign. The VC was on average 4.5 times higher during the pre-monsoon 224 campaign compared to the post-monsoon campaign (Table S2) in line with previous studies (Gani et 225 al., 2019; Saha et al., 2019). The more stagnant conditions during the post-monsoon campaign likely 226 traps nocturnal emissions and their reaction products close to the surface, allowing for a significant 227 build-up of concentrations.

228 3.2 Gas phase observations

229 Time series of the observed mixing ratios (ppbv) of NO, NO₂ and O₃ are shown in Figure 1, for the 230 pre- and post-monsoon campaigns. The campaign averaged diurnal profiles are shown in Figure S3 231 and the mean, median and maximum mixing ratios are given in Table S2. It should be noted that only 232 one week of data was available for the pre-monsoon period. During the post-monsoon campaign, 233 extremely high mixing ratios of NO were observed with a campaign maximum mixing ratio of ~870 234 ppbv during the early morning of the 1st of November. During the early part of the pre-monsoon 235 campaign, a large enhancement in NO was observed with mixing ratios around 400 ppbv (Figure S4), 236 followed by significantly lower concentrations throughout the rest of the campaign. The campaign-237 average NO diurnal profile shows very high NO mixing ratios at night (pre-: ~ 50 ppbv, post-: ~300 238 ppbv), with low afternoon mixing ratios < 2 ppbv due to ozone titration. These high NO 239 concentrations at night likely reduce any night-time chemistry through reactions with NO₃ radicals 240 and ozone. NO₂ during the pre-monsoon was observed to increase as the boundary layer reduced in 241 the late afternoon, with a mid-afternoon minimum. During the post-monsoon, a double peak in 242 concentrations was observed, in line with increasing ozone in the morning, and increasing NO in the 243 afternoon. Ozone showed a strong diurnal variation across both campaigns, with average afternoon 244 mixing ratios ~ 75 ppbv with pre- and post-monsoon maximums of 182 ppbv and 134 ppbv 245 respectively. Night-time O₃ concentrations were significantly higher during the pre-monsoon 246 campaign, likely due to the significantly lower NO concentrations.

247 3.3 Particle phase observations

248 The sampling site was heavily polluted in terms of particulate matter. The mean $\pm \sigma$ PM_{2.5} 249 concentration (Table S2) during the pre-monsoon campaign was $(141 \pm 31) \mu g m^{-3}$ with a spike in 250 concentrations of 672 μ g m⁻³ on the 01/6/2018 at 21:00 (Figure 1). The diurnal (Figure S5) shows 251 concentrations generally flat throughout the day. During the post-monsoon campaign, the average 252 $PM_{2.5}$ concentration was higher at (182 ± 94) μ g m⁻³, with a spike in concentrations of 695 μ g m⁻³ at 253 the end of the campaign (Figure 1). The diurnal shows a mid-afternoon minimum with high morning 254 and night concentrations. HR-AMS was used to measure the PM1 sulfate and total organics. 255 Campaign averaged total organics concentrations were approximately double in the post-monsoon 256 $(48.7 \pm 35.4) \,\mu\text{g}$ m⁻³ compared to the pre-monsoon $(19.8 \pm 13.7) \,\mu\text{g}$ m⁻³. During the pre-monsoon 257 campaign, concentrations are generally flat throughout the day, with an increase in the late 258 afternoon, likely as the boundary layer decreases (Figure S5). During the post-monsoon, a much 259 more prominent diurnal is observed, with a mid-day minimum and high night-time concentrations. 260 This diurnal is likely driven by boundary layer conditions. Sulfate averaged (7.5 \pm 1.8) μ g m⁻³ during 261 the pre-monsoon campaign, with slightly lower average concentrations observed in the post-262 monsoon: $(5.6 \pm 2.7) \mu g m^3$ as shown in Figure S5. The sulfate diurnal variations are similar to those 263 of the organic aerosol.

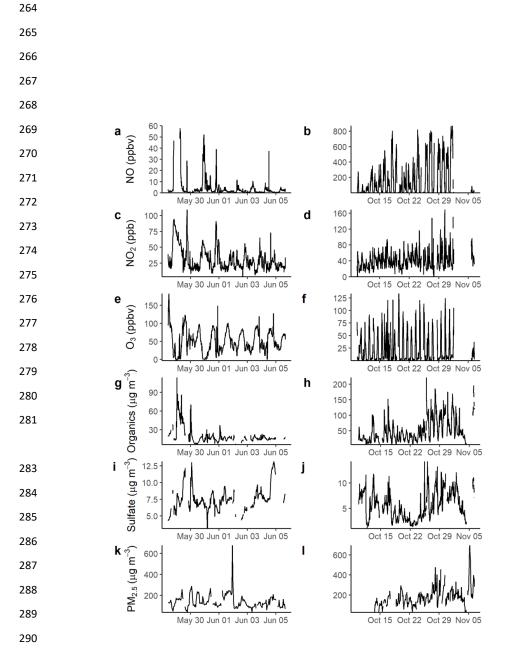



Figure 1. Time series of pollutants across the pre- (a,c,e,g,i) and post-monsoon (b,d,f,h,j)
 campaigns. During the pre-monsoon, NO concentrations were filters to below 60 ppbv, due to a large enhancement in concentrations at the start of the campaign, the full time series is
 shown in Figure S4. NO, NO₂, O₃ and HR-AMS – SO₄²⁻ were averaged to 15 minutes. PM_{2.5} was measured hourly.

298 3.4 Isoprene and monoterpene measurements

Isoprene was measured hourly using gas-chromatography with flame-ionisation-detection (GC-FID) across the two campaigns (Nelson et al., 2021), with the time series shown in Figure 2. The time series highlights similar diurnal variability each day, driven by biogenic emissions. Figure 3 shows the average diurnal profiles of isoprene during pre-monsoon (a) and post-monsoon (b). The mean isoprene mixing ratios were (1.22 ± 1.28) ppbv and (0.93 ± 0.65) ppbv, with maximum isoprene mixing ratios of 4.6 ppbv and 6.6 ppbv across the pre- and post-monsoon, respectively. This is in the same range as measured in Beijing (winter mean: (1.21 ± 1.03) ppbv, summer mean: (0.56 ± 0.55) ppbv, Acton et al., (2020)), Guangzhou (year round (1.14) ppbv) (Zou et al., 2019) and Taipei (summer daytime: (1.26) ppbv, autumn daytime: (0.38) ppbv) (Wang et al., 2013). The diurnal variability observed in the pre-monsoon period corresponds to a typical biogenic emission driven profile, with a rapid increase of isoprene around 05:00, reaching a peak around or after midday, before a nocturnal minimum. Figure 3 indicates that average daytime peak isoprene mixing ratios during the pre-monsoon campaign were roughly double that of the post-monsoon campaign. In contrast, average nocturnal mixing ratios of isoprene were 5 times higher in the post-monsoon compared to the pre-monsoon ((0.65 ± 0.43) ppbv versus (0.13 ± 0.18) ppbv). In the post-monsoon campaign, isoprene mixing ratios show a strong biogenic emission driven diurnal profile at the start of the campaign. However, towards the end of the post monsoon measurement period, the isoprene mixing ratios become less variable with a high mixing ratio maintained overnight (Figure 2). This is potentially due to more stagnant conditions as observed by the VC in Figure S1.

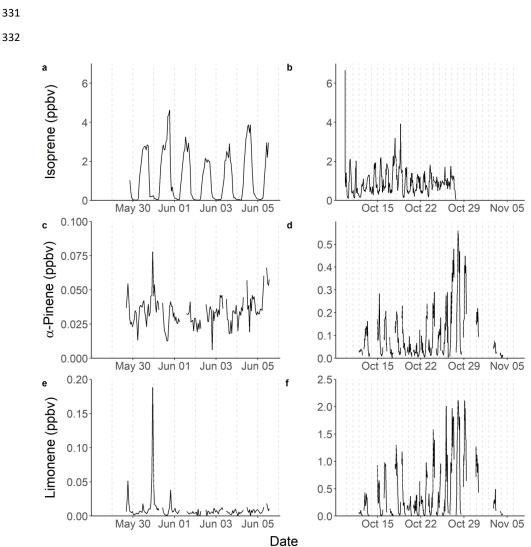
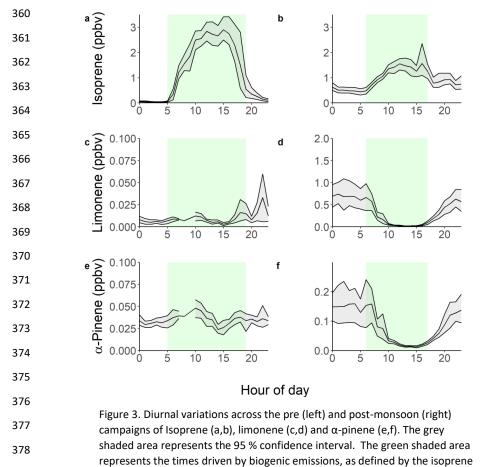


Figure 2. Time series across the pre- (left) and post-monsoon (right) campaigns of
 Isoprene (a,b), α-pinene (c,d), limonene (d,e). The vertical dotted lines represent midnight
 for each day.

336

A recent study in Delhi averaged across post-monsoon, summer and winter campaigns found that at
vegetative sites biogenic isoprene contributed on average 92 - 96 % to the total isoprene, while at
traffic dominated sites only 30 - 39 % of isoprene was from biogenic sources (Kashyap et al., 2019).
This is similar to the contributions of biogenic isoprene (40 %) to total isoprene mixing ratios at the
traffic dominated Marylebone Road London site.(Khan et al., 2018a) To gain some understanding of
the sources of isoprene at our site in Delhi, the observed concentrations of isoprene were correlated
to CO, which is an anthropogenic combustion tracer (Figure 4) similar to previous studies.(Khan et

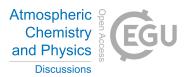


379


diurnals.

344 al., 2018a; Wagner and Kuttler, 2014) The isoprene concentrations were split between night and day 345 (pre-monsoon; night: 19:00 - 05:00 h, day 05:00 - 19:00 h, post-monsoon; night: 17:00-06:00 h, day: 346 06:00-17:00 h), based on the observed isoprene diurnals as shown in Figure 3. Isoprene correlated 347 strongly with CO during the night across both campaigns (pre-monsoon: R²= 0.69, post-monsoon: 348 R^2 = 0.81), but no correlation was observed during the day (R^2 < 0.1). This suggests that daytime 349 isoprene is predominantly from biogenic sources, although a small amount will be from 350 anthropogenic sources, and that nocturnal isoprene is emitted from anthropogenic sources, as seen 351 in other locations. (Khan et al., 2018b; Panopoulou et al., 2020; Wang et al., 2013) The night-time 352 isoprene mixing ratios (pre-monsoon: (0.13 ± 0.18) ppbv, post-monsoon: (0.65 ± 0.43) ppbv) were 353 substantially higher than measured previously in Beijing and London (<50pptv, (Bryant et al., 2020; 354 Khan et al., 2018b)), but pre-monsoon concentrations were similar to those observed at night in 355 Taipei (0.19 ppbv)(Wang et al., 2013). The high night-time concentrations during the post-monsoon 356 period, towards the end of October are also likely influenced by the formation of a very low 357 boundary layer, trapping pollutants near the surface, affecting all species similarly. An increase in 358 biomass burning may also be a factor. Therefore, during the post-monsoon campaign a significant 359 amount of isoprene oxidation products will be of anthropogenic origin.

380


381

382 Several monoterpenes were measured using GCxGC-MS. The time series of two monoterpenes, 383 limonene and α -pinene, are shown in Figure 2. The α -pinene mixing ratio averaged (0.034 ± 0.011) ppbv during the pre-monsoon and (0.10 ± 0.11) ppbv during the post monsoon periods. This is in 384 385 comparison to limonene, which averaged (0.01 ± 0.02) ppbv and (0.42 ± 0.51) ppbv across the pre-386 and post-monsoon campaigns, respectively. A strong diurnal variation was observed for both 387 monoterpenes during the post-monsoon, peaking during the night (Figure 3), with a midday 388 minimum. Nocturnal mixing ratios of the two monoterpenes were substantially higher during the 389 post-monsoon (Limonene: (0.59 ± 0.11) ppbv, α -pinene: (0.13 ± 0.12) ppbv) than the pre-monsoon 390 (Limonene: (0.011 ± 0.025) ppbv, α -pinene: (0.033 ± 0.009) ppbv) period. This diurnal again is likely 391 driven by boundary layer dynamics. During the pre-monsoon, limited diurnal variability was 392 observed compared to the post-monsoon. Limonene was dominated by 3 short lived spikes in 393 concentrations towards the start of the campaign (Figure 2). α -pinene concentrations generally 394 increased during the morning, before decreasing during the afternoon. A further 10 monoterpenes 395 were measured concurrently using GCxGC-MS (Nelson et al., 2021; Stewart et al., 2021c). For all MT species, the post monsoon period had higher mean mixing ratios, with large nocturnal 396 397 enhancements in mixing ratios.

398 During the post-monsoon, α -pinene and limonene correlated strongly with CO during the day (α -399 pinene; $R^2 = 0.82$, limonene; $R^2 = 0.90$) and moderately at night (α -pinene; $R^2 = 0.49$, limonene; $R^2 = 0.49$, limo 400 0.56) as shown in Figure 4, suggesting anthropogenic sources. Other potentially important 401 anthropogenic monoterpene sources include biomass burning, cooking and the use of personal 402 care/volatile chemical products (Coggon et al., 2018; Gkatzelis et al., 2021; Hatch et al., 2019; Klein 403 et al., 2016). The shallow nocturnal boundary layers across both campaigns leads to relatively high 404 concentrations of total monoterpenes, with a maximum mixing ratio of 6 ppbv observed during the 405 post-monsoon (Stewart et al., 2021c). After sunrise, the expanding boundary layer dilutes the high 406 concentrations alongside increasing OH concentrations from photolytic sources such as the 407 photolysis of HONO and carbonyls which likely causes a rapid decrease in the monoterpene mixing 408 ratios.

- 409
- 410
- 411
- 412
- 413
- 414
- 415
- 416
- 417
- 418
- 419

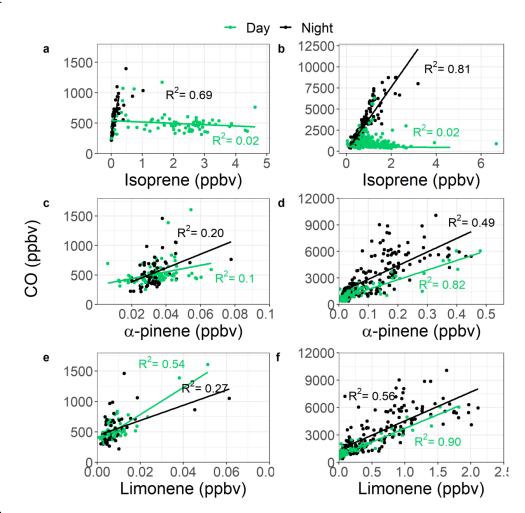


Figure 4. Correlations between Isoprene, limonene and α -pinene with CO across the pre (left) and post-monsoon (right) campaigns. The samples are split between daytime (green) and night-time (black) as defined by the Isoprene diurnals in Figure 3.

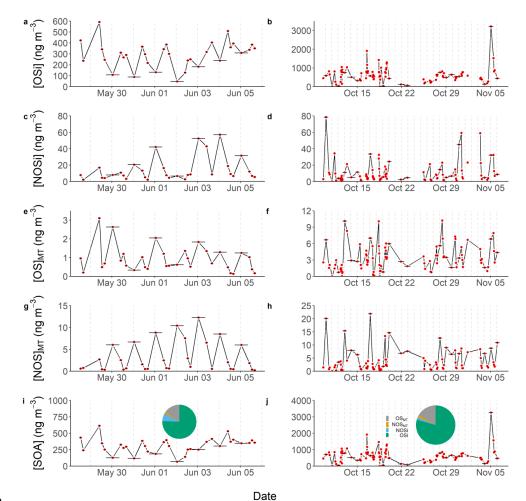
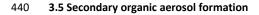



Figure 5. Time series across the pre- (left) and post-monsoon (right) campaigns of the quantified SOA tracers: OSi (a,b), NOSi (c,d), OS_{MT} (e,f), NOS_{MT} (g,h) and the sum of all SOA tarcers (i,j) with the average campaign contributions. The vertical dotted lines represent midnight for each day. Only species identified in more than 40 % of the samples for each campaign were included.

441 At the measured concentrations, monoterpenes and isoprene are an important source of ozone and 442 OH reactivity at this site (Nelson et al., 2021). The resultant oxidised products will also be a key 443 source of SOA production. The UHPLC-MS² analysis identified and quantified 75 potential markers 444 across four classes of SOA, isoprene OS (OSi) and NOS (NOSi) derived species and monoterpene OS 445 (OS_{MT}) and NOS (NOS_{MT}) species. Figure 5 shows the contribution to the total quantified SOA (qSOA), 446 which consists of the time averaged sum of the four SOA classes (OSi, NOSi, OS_{MT}, NOS_{MT}), across the 447 pre- and post-monsoon campaigns. OSi species were the dominant SOA class quantified in this 448 study, contributing 75.6 % and 79.4 % of the qSOA across the pre- and post-monsoon campaigns 449 respectively. NOSi species contributed significantly more to the qSOA during the pre-monsoon (7.6 450 %) compared to the post-monsoon (2.1 %) period. Similar contributions from the monoterpene

451 derived SOA species were observed across both campaigns.

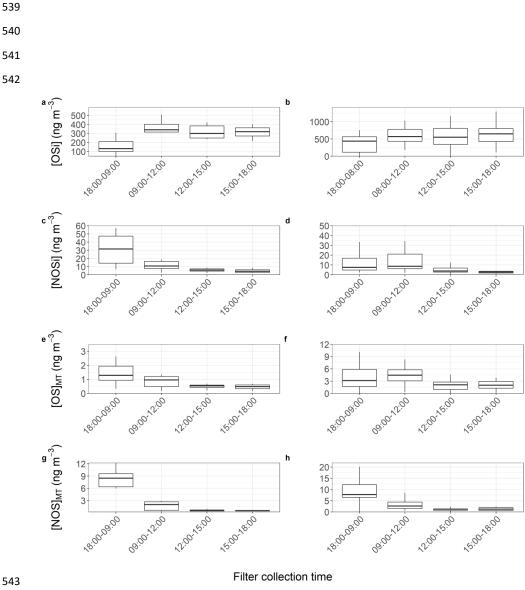

452 3.5.1 Isoprene SOA

453 OSi species are predominantly formed by photo-oxidation of isoprene by OH radicals with the 454 subsequent products formed dependent on ambient NO concentrations (Wennberg et al., 2018). The pathways are split into high-NO and low-NO, although the NO concentrations that constitute 455 456 high and low are a sliding scale depending on the amount of reactivity (defined as ([OH] x k_{OH}) 457 (Newland et al., 2021). Under low-NO conditions, isoprene epoxydiol isomers (IEPOX) (Paulot et al., 458 2009) are formed which can then undergo reactive uptake to the particle phase by acid-catalysed 459 multiphase chemistry involving inorganic sulfate, to form 2-MT-OS (Lin et al., 2012; Riva et al., 2019; 460 Surratt et al., 2010). Under high-NO conditions, 2-methyl glyceric acid is the dominant gas-phase 461 marker produced, which can undergo reactive uptake to the particle phase to form 2-MG-OS (Lin et 462 al., 2013a; Nguyen et al., 2015; Surratt et al., 2006, 2010).

A total of 21 potential OSi C₂₋₅ markers previously identified in chamber studies (Nguyen et al., 2010;
Riva et al., 2016a; Surratt et al., 2007, 2008b) and other ambient studies (Bryant et al., 2020;
Budisulistiorini et al., 2015; Hettiyadura et al., 2019; Kourtchev et al., 2016; Rattanavaraha et al.,
2016a; Wang et al., 2018b, 2021b) were quantified in the collected ambient samples. It should be
noted that several of the smaller (C₂₋₃) OSi tracers likely form from glyoxal, methylglyoxal and
hydroxyacetone as well as isoprene, and as such present a potential non-isoprene source of OSi
(Galloway et al., 2009; Liao et al., 2015).

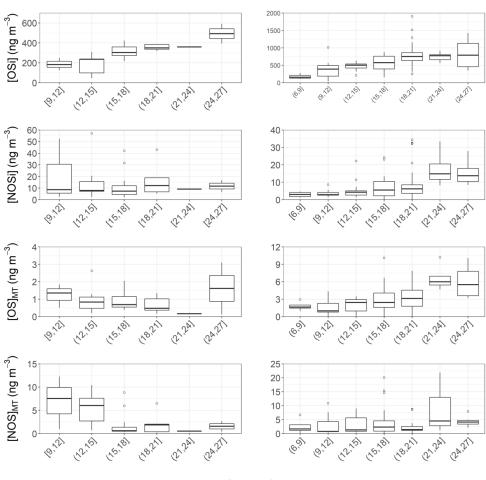
470 Figure 5 shows the time series of total OSi concentrations observed across pre- (left, 5a) and post-471 (right, 5b) monsoon campaigns. Total OSi time averaged concentrations (Table 1) were c.a. 2.3 times 472 higher during the post-monsoon ($^{556.6 \pm 422.5}$ ng m⁻³) campaign than the pre-monsoon campaign 473 (\sim 237.8 ± 118.4 ng m⁻³). These concentrations are similar to those observed in Beijing during summer 474 2017 (237.1 ng m⁻³, (Bryant et al., 2020)), but higher than those observed in Shanghai in 2018 (40.4 475 ng m⁻³) and 2019 (34.3 ng m⁻³) (Wang et al., 2021b). As previously discussed, OSi species have been 476 shown to form via the gas-phase photo-oxidation of isoprene, with the reactive update of the 477 oxidised species into to particulate phase via sulfate (Lin et al., 2013a; Surratt et al., 2010). Recently, 478 a heterogeneous photo-oxidation pathway from 2-MT-OS ($C_5H_{12}O_7S$) to several OSi species was proposed, including C₅H₁₀O₇S, C₅H₈O₇S, C₅H₁₂O₈S, C₅H₁₀O₈S and C₄H₈O₇S (Chen et al., 2020). 2-MT-OS 479 480 showed moderate correlations (pre-monsoon : $R^2 = 0.52-0.72$, post-monsoon: $R^2 = 0.14-0.35$) with 481 these OSi tracers that were lower than observed in Beijing summer (R² = 0.83-0.92) (Bryant et al., 482 2020). These correlations could suggest that this is a more common formation route in pre-monsoon 483 Delhi, than in post-monsoon. However, the correlations could also be driven by the common 484 pathways between the OSi species, with the reactive uptake of gas phase intermediates via sulfate 485 reactions. The lower correlations during the post-monsoon could be due to increased influences of 486 anthropogenic sources coupled to the stagnant conditions.

487 Figure 6 shows the binned OSi concentrations for each filter collection time across the pre- and postmonsoon campaigns to create a partial diurnal profile. During the pre-monsoon, the daily variation 488 489 in OSi concentrations was much clearer, with day-time maxima and nocturnal minima, which are in 490 line with daily peak isoprene (Figure 3) and OH radical concentrations. The highest observed OSi 491 concentrations during the pre-monsoon were \sim 600 ng m⁻³, which occurred at the start of the 492 campaign. High isoprene concentrations may have been the cause, but unfortunately isoprene 493 measurements were not available during this period to confirm. However, high OSi concentrations 494 also occurred when particulate inorganic sulfate concentrations were at their highest (Figure S6), 495 while sulfate measured via the HR-AMS was also high during this period (Figure 1). During the post-496 monsoon, although a similar diurnal pattern was observed, the variation was less pronounced, with 497 higher OSi concentrations observed at the start and end of the campaign (Figure 5). The low OSi 498 concentrations during the middle of the campaign, coincide with lower isoprene and inorganic 499 sulfate concentrations, but also low VC values, suggesting more stagnant conditions.


500 The sum of OSi species across all filters sampled showed a variable correlation with particulate 501 sulfate across both campaigns. The pre-monsoon correlation was similar to those observed in 502 Beijing, Guangzhou and the SE-US (R²: 0.55)(Bryant et al., 2020, 2021; Budisulistiorini et al., 2015; 503 Rattanavaraha et al., 2016a) while the post-monsoon was significantly weaker (R²: 0.28). However, a 504 clear relationship between OSi tracers and inorganic sulfate can be seen in Figure 7 across both 505 campaigns, where the highest OSi concentrations occurred under the highest SO₄²⁻ concentrations. 506 During the post-monsoon campaign, OSi concentrations levelled off at high sulfate concentrations. 507 In the pre-monsoon this levelling off is not observed, potentially due to the lower number of 508 samples. The high concentrations of organics measured by the HR-AMS (Table S2) during the post-509 monsoon (48.7 \pm 35.4) µg m⁻³ compared to the pre-monsoon (19.8 \pm 13.7) µg m⁻³, suggests the 510 reactive uptake of the gaseous OSi intermediates to the aerosol phase may be limited due to 511 extensive organic coatings on the sulfate aerosol. Multiple studies have now shown that organic 512 coatings on sulfate aerosol can limit the reactive uptake of IEPOX, suggesting the pre-monsoon is 513 volume limited but the post-monsoon is diffusion limited. (Gaston et al., 2014; Lin et al., 2014; Riva 514 et al., 2016c)

515 Isoprene NOS (NOSi) have been shown to be produced by photo-oxidation in the presence of NO 516 and from NO₃ oxidation chemistry (Hamilton et al., 2021; Ng et al., 2017; Surratt et al., 2008b). Ten 517 different NOSi tracers were screened for across the two campaigns, with eight identified in the pre-518 monsoon and ten in the post-monsoon. These tracers included: mono-nitrated (C₅H₉O₁₀NS, 519 $C_5H_{11}O_9NS$, $C_5H_{11}O_8NS$), di-nitrated ($C_5H_{10}O_{11}N_2S$), and tri-nitrated ($C_5H_9O_{13}N_3S$) species. These tracers 520 have been identified previously in China (Bryant et al., 2020, 2021; Hamilton et al., 2021; Wang et 521 al., 2018b, 2021b). Unlike the OSi tracers, total NOSi concentrations were on average higher during 522 the pre-monsoon (32.6 \pm 19.9) ng m⁻³ compared to the post-monsoon (20.2 \pm 13.3) ng m⁻³. This is 523 likely due to extremely high night-time NO concentrations during the post-monsoon quenching NO₃ 524 radicals, limiting the isoprene + NO₃ pathway. The NOSi time series and diurnal shown in Figures 5 525 and 6 respectively highlight the strong nocturnal enhancements in concentrations during the pre-526 monsoon, suggesting isoprene + NO₃ formation pathway is dominant. Due to the long sampling time, 527 it is likely that these species are forming in the early evening as NO₃ oxidation becomes more 528 competitive with OH, while isoprene concentrations are still relatively high. During the post-529 monsoon, NOSi concentrations were highest at night and the early morning. The high morning 530 concentrations could be due to non-local sources mixing down as the shallow night-time boundary 531 layer breaks down. Ideally, future work in Delhi or India should focus on the measurements of 532 radicals and OH reactivity (k_{OH}), in order to improve our understanding of the chemistry occurring in extremely polluted environments. A large spike in NOS_i concentrations is observed at the start of the 533

534post-monsoon campaign, which was not observed for the OSi tracers, this coincides with lower NO535concentrations than the rest of the post-monsoon campaign, reducing the NO3 quenching by NO,536allowing for more isoprene + NO3 oxidation. The NOSi species did not correlate towards particulate537sulfate (R² < 0.2) across either campaign, suggesting that uptake onto sulfate is not the limiting step</td>538in NOSi formation (unlike for the OSi species).



545

Figure 6. Partial diurnal variations from the binned concentrations of OSi, NOSi, OS_{MT} and NOS_{MT} concentrations at each filter collection time across the pre (left) and post-monsoon (right) campaigns. The lower and upper part of the box representing the 25th and 75th percentiles, with the upper and lower lines extending no further than 1.5 times the interquartile range of the highest and lowest values within the hinge respectively. Only species identified in more than 40 % of the samples for each campaign were included.



 $SO_4^{2^-}$ (µg m⁻³)

- Figure 7. Quantified SOA (OS_i, NOS_i, OS_{MT}, NOS_{MT}) vs inorganic sulfate concentrations across the pre- (left) and post-monsoon (right) campaigns. The lower and upper part of the box representing the 25th and 75th percentiles, with the upper and lower lines extending no further than 1.5 times the interquartile range of the highest and lowest values within the hinge respectively. Only species identified in more than 40 % of the samples for each campaign were included.

556

557 3.8 Monoterpene secondary organic aerosol

558 Monoterpene derived OS (OS_{MT}) and NOS (NOS_{MT}) markers have also been identified from the 559 oxidation by OH, NO₃ and O₃ in the presence of SO₂ or sulfate seed in simulation studies (Brüggemann et al., 2020b; linuma et al., 2007; Kleindienst et al., 2006; Surratt et al., 2008a; Zhao et 560 561 al., 2018). Compared to isoprene, the ozonolysis of monoterpenes is a key degradation pathway, 562 with higher SOA yields from ozonolysis observed when compared to isoprene (Åsa M. Jonsson et al., 563 2005; Atkinson and Arey, 2003; Eddingsaas et al., 2012a, 2012b; Kristensen et al., 2013; Mutzel et 564 al., 2016; Simon et al., 2020; Zhao et al., 2015). A recent study in the SE-US suggests that the 565 degradation of 80 % of monoterpenes at night is due to ozonolysis at that location (Zhang et al., 566 2018). Monoterpene derived OS and NOS species have been extensively observed, with ON 567 contributing considerably to OA (Lee et al., 2016; Xu et al., 2015; Zhang et al., 2018). Recently NOS 568 hydrolysis has also been shown to be a potential formation route of OS particle phase species (Darer 569 et al., 2011; Passananti et al., 2016).

570 Twenty-three monoterpene-derived organosulfate (OS_{MT}) species, which have been seen previously 571 in chamber (Surratt et al., 2008b) and ambient studies (Brüggemann et al., 2019; Wang et al., 2018b, 572 2021b), were identified across the pre- and post-monsoon campaigns. It should be noted that 573 recently OS_{MT} artefacts has been shown to form when filters have been sampled without a denuder. 574 (Brüggemann et al., 2020b). However, the strong diurnal variations of the OS_{MT} species, and lack of 575 correlation with SO_2 suggest this process is unlikely to have contributed significantly to the OS_{MT} 576 measured in this study. Post-monsoon concentrations were similar (3.96 \pm 1.6) ng m⁻³ to the pre-577 monsoon (3.05 \pm 1.3) ng m⁻³, with C₉H₁₆O₆S the dominant species across both campaigns, 578 contributing on average ~ 29 % of the OS_{MT} mass. It should be noted that the majority of the OS_{MT} 579 were not identified in every sample, and as such only tracers which were identified in at least 40 % 580 of the samples were examined further.

581 Total OS_{MT} showed a strong diurnal profile across both campaigns, peaking at night, with an 582 afternoon minimum (Figures 5 & 6). During the pre-monsoon campaign, the highest OS_{MT} 583 concentrations were observed during a day-time sample, coinciding with peak sulfate and NO 584 concentrations. Both limonene and α -pinene also show peaks during this filter sampling period of ~ 585 0.05 ppbv. Spikes in limonene and α -pinene concentrations were also observed on the 31st of May, 586 but OS_{MT} concentrations were much lower, likely due to the lower sulfate concentrations. During the 587 post-monsoon campaign, nocturnal enhancements are observed (Figure 6), suggesting $MT + NO_3$ 588 chemistry is important. Like the NOSi markers, higher OS_{MT} concentrations were observed during the 589 early morning sample, likely due to a lower PBLH concentrating the markers coupled to MT+OH/O₃ 590 occurring after sunrise in the post-monsoon. The night-time formation of the OS_{MT} species is in line 591 with previous studies (Bryant et al., 2021), and with the diurnal variations of α -pinene and limonene, 592 which peak at night. Previous chamber studies investigating reactions of monoterpenes with NO₃ 593 radicals have also shown formation of OS_{MT} with the same molecular formulae as measured here 594 (Surratt et al., 2008a).

OS_{MT} concentrations observed in Delhi are much lower than those of the OSi, similar to other studies
 (Hettiyadura et al., 2019; Wang et al., 2018b, 2021b). Considering the high concentrations of
 extremely reactive α-pinene and limonene observed during the post-monsoon period, higher OS_{MT}
 concentrations might be expected. One possible reason for the low OS_{MT} is the inability of OS_{MT}
 precursor species to undergo reactive uptake into the aerosol phase under atmospherically relevant
 acidic conditions, with chamber studies suggesting extremely acidic conditions are needed for

uptake to occur (Drozd et al., 2013). Delhi is characterised by large concentrations of free ammonia
and alkaline dust, and previous studies have highlighted that it has less acidic aerosol (pH 5.7 – 6.7,
Kumar et al., 2018) across the year than Beijing (pH 3.8 – 4.5, Ding et al., 2019) and the SE-US (pH 1.6
- 1.9, Rattanavaraha et al., 2016a).

605 Unlike the OS_{MT} species, the NOS_{MT} species (C₁₀H₁₇NO₇S, C₉H₁₅NO₈S, C₁₀H₁₇NO₉S, C₉H₁₅NO₉S, 606 $C_{10}H_{17}NO_8S$) showed strong seasonality, with pre- and post-monsoon concentrations of (7.6 ± 3.8) ng 607 m⁻³ and (17.6 ± 6.1) ng m⁻³ respectively. This is opposite to the quantified NOSi species, which 608 showed higher pre-monsoon concentrations. This is likely due to much higher post-monsoon 609 concentrations of monoterpenes. Of the NOS_{MT} species observed, C₁₀H₁₇NO₇S was the most 610 abundant, contributing on average 79 % and 76 % of the NOS_{MT} concentrations across the pre- and 611 post-monsoon respectively. Previous studies have also highlighted C10H17NO7S to be the dominant 612 monoterpene derived sulfate containing tracer (Wang et al., 2018b). In the post-monsoon nine $C_{10}H_{17}NO_7S$ isomers were observed, and seven in the pre-monsoon. The summed $C_{10}H_{17}NO_7S$ 613 614 concentrations during the pre- (5.96 ± 3.33) ng m⁻³ and post-monsoon (13.36 ± 4.98) ng m⁻³, are of a 615 similar magnitude to those observed in other locations as shown in Table 2. These concentrations 616 are also similar to those quantified by authentic standards across four Chinese megacities (Wang et 617 al., 2021a). Like the OS_{MT} species, some NOS_{MT} species were not identified in many of the filter 618 samples, and as such tracers which were observed in more than 40 % of the samples were summed 619 for further analysis. The NOS_{MT} pre-monsoon time series (Figure 5) shows a similar temporal profile 620 to the NOSi species, with lower concentrations during the enhancement in NO concentrations 621 (Figure S4) at the start of the campaign. NOS_{MT} showed strong diurnal variations across both campaigns (Figure 6), peaking at night with lower concentrations during the afternoon, as seen 622 623 previously (Bryant et al., 2021; Wang et al., 2018b). Therefore, the formation of NOS_{MT} is likely 624 dominated by NO₃ radical chemistry. Both NOS_{MT} and OS_{MT} species showed limited correlation 625 towards SO₂ and particulate sulfate ($R^2 < 0.1$), indicating that although sulfate is essential to their 626 formation, sulfate availability does not control NOS_{MT} concentrations.

627

628 3.10 Contributions of total quantified SOA (qSOA) to particulate mass

629 Particulate concentrations in Delhi are among the highest across the world (WHO, 2018), with 630 concentrations over 600 µg m⁻³ being observed during this study. qSOA, defined here as the sum of 631 all OSi, NOSi, OS_{MT}, and NOS_{MT} tracers quantified (including those not identified in more than 40 % of 632 the samples), was calculated to determine the total contribution these species make to particulate 633 mass in Delhi. Total oxidised organic aerosol (OOA), a proxy for SOA in PM1, was derived from the 634 HR-AMS measurements during the pre- and post-monsoon campaigns, with averages of (19.8 ± 13.7) 635 μ g m⁻³ and (48.7 ± 35.4) μ g m⁻³ respectively. qSOA contributed on average (2.0 ± 0.9) % and (1.8 ± 636 1.4) % to the total OOA. Isoprene and monoterpene derived species contributed on average 83.2 % and 16.8 % of qSOA across the pre-monsoon respectively compared to 81.5 % and 18.5 % during the 637 638 post-monsoon respectively. During certain periods gSOA contributed a maximum of 4.2 % and 6.6 % 639 to OOA during the pre- and post-monsoon, respectively. This is under the assumption that when the 640 OS and NOS species fragment in the AMS ion source they lose their sulfate and nitrate groups. This is 641 similar to the contributions made by OSi markers in Beijing to total OOA (2.2 %) (Bryant et al., 2020). 642 Previous studies in the SE-US have reported much higher contributions of isoprene species to total 643 OA. As quantified by an aerosol chemical speciation monitor, summed iSOA tracers on average 644 accounted for 9.4 % of measured OA at Look Rock, downwind of Maryville and Knoxville, but up to a 645 maximum of 28.1 % (Budisulistiorini et al., 2015). This is lower than that measured at a rural site at

646 Yorkville, Georgia with just low-NO isoprene SOA tracers accounting for between 12-19 % of total OA
647 (Lin et al., 2013b).

648 Sulfate was also measured in the PM1 size range by HR-AMS, with pre- and post-monsoon mean 649 concentrations of (7.5 \pm 1.8) μ g m⁻³ and (5.5 \pm 2.7) μ g m⁻³. The sulfate containing OS and NOS species 650 quantified in this study may fragment in the AMS to produce a sulfate signal which is not related to inorganic sulfate. To estimate the contribution that sulfate contained within qSOA species could 651 652 make to total AMS sulfate, the quantified mass of sulfate contained within each marker was 653 calculated based on the fraction of sulfate to each marker molecular mass. For example, 2-MT-OS 654 has an accurate mass of m/z 216.21, meaning the percentage of 2-MT-OS mass associated with 655 sulfate is ~44 %. During the pre-monsoon campaign the qSOA sulfate accounted for on average 2.2 656 % to the total PM1 sulfate, but up to 4.8 % on certain days. qSOA contributed considerably more to 657 the sulfate in the post-monsoon campaign, with an average of (6.1 ± 4.5) % with a maximum of 18.7 658 %. This finding indicates the need to consider the sources of particulate sulfate measured by the 659 AMS when calculating aerosol pH. The sulfate contribution from the fragmentation of common small 660 OS compounds (hydroxymethylsulfonate, methylsulfonic acid) can be distinguished in the AMS using the relative ratio of sulfur containing peaks. (Chen et al., 2019; Javed et al., 2021) However, more 661 662 work is needed to determine how larger OS and NOS fragment in the AMS such as those quantified 663 in this study. Overall, this highlights that isoprene and MT oxidation can make significant 664 contributions to organic and sulfate-containing aerosol, even in extremely polluted environments 665 such as Delhi. It should be noted that this is just a subset of potentially many more SOA from 666 isoprene and monoterpene markers and only focusses on sulfate containing species.

667

668 Conclusion

Isoprene- and monoterpene-derived organosulfate (OS) and nitrooxy organosulfate (NOS) species
were quantified during pre- and post-monsoon measurement periods in the Indian megacity of
Delhi. An extensive dataset of supplementary measurements was obtained alongside filter samples,
including isoprene and speciated monoterpenes. Isoprene and monoterpene emissions were found
to be highly influenced by anthropogenic sources, with strong correlations to anthropogenic tracers
at night across both campaigns. High nocturnal concentrations of pollutants were observed due to a
low boundary layer height and stagnant conditions, especially during the post-monsoon period.

676 Isoprene OS markers (OSi) were observed in higher concentrations during the post-monsoon (557 \pm 677 423) ng m⁻³ compared to the pre-monsoon campaign (238 \pm 118) ng m⁻³. OSi showed a moderate 678 correlation with inorganic sulfate across both campaigns. However, concentrations levelled off at 679 high sulfate concentrations during the post-monsoon which is consistent with organic coatings 680 limiting uptake of isoprene epoxides. Isoprene NOS species (NOSi) showed nocturnal enhancements 681 across both campaigns, while the highest average concentrations were observed in the morning 682 samples of the post-monsoon campaign. The high morning concentrations are likely due to the 683 oxidation of VOCs by OH radicals from photolytic processes throughout the morning. Monoterpene 684 derived OS (OS_{MT}) and NOS (NOS_{MT}) markers were observed to have nocturnal enhancements in concentrations, in-line with their precursors. NOS_{MT} markers were observed in similar concentrations 685 686 to those of other megacities. Total quantified SOA contributed on average (2.0 ± 0.9) % and $(1.8 \pm$ 687 1.4) % to the total OOA. Considering high OOA concentrations were observed across the two 688 campaigns, the total markers contributed up to a maximum of 4.2 % and 6.6 % across the pre- and 689 post-monsoon respectively. Overall, this work highlights that even small numbers of isoprene and

- 690 monoterpene derived SOA markers can make significant contributions to OA mass, even in highly
- 691 polluted megacities.
- 692
- ⁶⁹³ Table 1. Molecular formulae, retention times and time weighted means (ng m⁻³) of
- organosulfates (OS) and nitrooxy oganosulfates (NOS) from isoprene (i) and monoterpenes
- (MT) observed across pre- and post-monsoon campaigns in Delhi.
- 695

	Molecular					
Class	formula	Pre-	SD	Post-	SD	RT's (min)
	$C_5H_{12}O_7S$	38.79	30.19	17.91	19.87	0.71
	$C_5H_{10}O_5S$	26.16	23.30	53.63	131.19	0.93
	$C_2H_4O_6S$	21.35	18.27	84.65	82.79	0.73
	$C_5H_{10}O_6S$	19.80	13.78	45.87	29.47	0.79
	C ₄ H ₈ O ₇ S	19.70	12.48	47.96	39.01	0.73
	C₃H6O₅S	19.50	12.47	35.27	40.15	0.73
	C ₅ H ₈ O ₇ S	18.76	11.01	38.75	25.34	0.73
	$C_4H_8O_6S$	16.57	9.77	45.48	37.46	0.74
	$C_5H_{10}O_7S$	11.82	7.04	25.89	18.06	0.73
	$C_3H_6O_6S$	6.64	5.00	38.06	40.30	0.73
OSi	$C_4H_8O_5S$	6.46	4.08	22.44	21.39	0.75
0	$C_5H_{10}O_8S$	6.25	5.07	7.00	5.54	0.73
	$C_2H_4O_5S$	5.33	3.37	15.92	13.79	0.73
	$C_2H_6O_5S$	5.23	6.36	24.99	20.38	0.73
	$C_5H_8O_5S$	5.16	2.57	7.87	7.93	0.85
	$C_3H_6O_7S$	3.54	3.49	14.78	11.50	0.75
	$C_5H_{12}O_6S$	2.01	1.23	6.53	4.32	0.74
	$C_3H_8O_6S$	1.90	1.08	12.25	10.82	0.75
	$C_5H_8O_9S$	1.20	1.04	2.12	1.85	0.64
	$C_4H_6O_6S$	1.10	0.76	8.61	15.65	0.74
	$C_5H_{12}O_8S$	0.55	0.43	0.65	0.61	0.75
	Total	237.83		556.64		
	$C_5H_{10}O_{11}N_2S$	18.65	8.77	11.63	8.09	1.39,1.92,2.85,3.4
	$C_5H_{11}O_9NS$	8.55	5.71	5.93	5.06	0.86
NOSi	$C_5H_9O_{10}NS$	3.91	3.46	1.42	1.31	0.94
N	$C_5H_{11}O_8NS$	1.52	0.84	1.17	1.20	1.09
	$C_5H_9O_{13}N_3S$	0.002	0.001	0.011	0.009	6.67,7.89,8.06
	Total	32.63		20.15		
	$C_9H_{16}O_6S$	1.10	0.61	1.67	0.88	6.67/7.14/7.5/8.3
	C ₁₀ H ₁₈ O ₅ S	0.56	0.63	0.10	0.12	3.39
F	$C_{10}H_{16}O_5S$	0.28	0.13	0.77	0.06	4.91/7/9.08/10.9/11.33/11.97/13.26
OS _{MT}	C ₁₀ H ₂₀ O ₇ S	0.25	0.21	0.27	0.21	4.19
0	C ₁₀ H ₁₆ O ₇ S	0.23	0.15	0.21	0.13	3.61/11.68
	C9H16O7S	0.16	0.17	0.22	0.19	4.39/6.77
	C ₁₀ H ₁₈ O ₆ S	0.15	0.10	NA	NA	10.27

	C9H14O6S	0.15	1.10	0.25	0.14	3.5/5.81
	$C_{10}H_{16}O_6S$	0.10	0.06	0.06	0.03	9.33
	C ₁₀ H ₁₈ O ₈ S	0.02	0.01	0.04	0.24	7.24
	C ₈ H ₁₄ O ₇ S	0.04	0.03	0.10	0.15	4.46
	Total	3.05		3.68		
						9.1/10.16/10.67/10.92/11.07/11.36/11.57/12.01
	C ₁₀ H ₁₇ NO ₇ S	5.96	3.33	13.36	4.98	/13.28
F	$C_9H_{15}NO_8S$	1.12	0.51	2.79	1.14	3.5/5.81
NOS _{MT}						
z	$C_{10}H_{17}NO_9S$	0.47	0.19	1.15	0.29	3.93/5.34/6.39/7.89/9.26/10.11/17.94
	$C_9H_{15}NO_9S$	0.0216	0.0044	0.22	0.14	2.69/3.46
	C ₁₀ H ₁₇ NO ₈ S	0.01	0.01	0.07	0.04	5.77
	Total	7.59		17.59		

696

697

698

699

700

Table 2. Comparison of $C_{10}H_{17}NO_7S$ concentrations across different locations.

701 Locations and concentrations in bold were quantfified by authentic standards.

702

	I	
Location	C ₁₀ H ₁₇ NO ₇ S (ng m ⁻³)	Reference
Delhi Pre-monsoon	5.96	This study
Delhi Post-monsoon	13.36	This study
Guangzhou summer	7.15	Bryant et al., 2021
Guangzhou winter	11.11	Bryant et al., 2021
Shanghai 15/16	6.21	Wang et al., 2021b
Shanghai 16/17	5.55	Wang et al., 2021b
Beijing	12.00	Wang et al., 2018b
Atlanta	9.00	Hettiyadura et al., 2019
Hong Kong	5.61	Wang et al., 2021a
Guangzhou	12.32	Wang et al., 2021a
Shanghai	16.51	Wang et al., 2021a
Beijing	13.15	Wang et al., 2021a

703

704 Data availability

- 705 Data used in this study can be accessed from the CEDA
- 706 archive: https://catalogue.ceda.ac.uk/uuid/ba27c1c6a03b450e9269f668566658ec (Nemitz et al.,
- 707 2020).

708 Author contributions

- 709 DJB prepared the manuscript with contributions from all authors. DJB, BSN, SJS, SHB, WSD, ARV,
- 710 JMC, WJFA, BL, EN and JRH provided measurements and data processing of pollutants used in this

- 711 study. MJN and ARR contributed to scientific discussion. S, RG, BRG, TH and EN assisted with
- 712 logistics. CNH, JDL, ARR, JFH provided overall guidance to the experimental setup and design.

713 Acknowledgements

- 714 The authors acknowledge Tuhin Mandal at CSIR-National Physical Laboratory for his support in
- 715 facilitating the measurement sites used in this project and Gareth Stewart for the VOC
- 716 measurements. This work was supported by the Newton Bhabha fund administered by the UK
- 717 Natural Environment Research Council through the DelhiFlux and ASAP projects of the Atmospheric
- 718 Pollution and Human Health in an Indian Megacity (APHH-India) programme. The authors gratefully
- 719 acknowledge the financial support provided by the UK Natural Environment Research Council and
- 720 the Earth System Science Organization, Ministry of Earth Sciences, Government of India, under the
- 721 Indo-UK Joint Collaboration (DelhiFlux). Daniel J. Bryant and Beth S. Nelson acknowledge the NERC
- SPHERES doctoral training programme for studentships. James M. Cash is supported by a NERC E3DTP studentship.

724 Financial support

- 725 This research has been supported by the Natural Environment Research Council (grant nos.
- 726 NE/P016502/1 and NE/P01643X/1) and the Govt. of India, Ministry of Earth Sciences (grant no.
- 727 MoES/16/19/2017/APHH, DelhiFlux).

728 Competing interests

729 The authors declare that they have no conflict of interest.

730 References

- Anand, V., Korhale, N., Rathod, A. and Beig, G.: On processes controlling fine particulate matters in
 four Indian megacities, Environ. Pollut., 254, doi:10.1016/j.envpol.2019.113026, 2019.
- 733 Anon: Import Surface Meteorological Data from NOAA Integrated Surface Database (ISD) •
- worldmet, [online] Available from: https://davidcarslaw.github.io/worldmet/index.html (Accessed
 24 October 2021), n.d.
- 736 Åsa M. Jonsson, *, Mattias Hallquist, and and Ljungström, E.: Impact of Humidity on the Ozone
- 737Initiated Oxidation of Limonene, Δ3-Carene, and α-Pinene, Environ. Sci. Technol., 40(1), 188–194,738doi:10.1021/ES051163W, 2005.
- Atkinson, R. and Arey, J.: Gas-phase tropospheric chemistry of biogenic volatile organic compounds:
 A review, Atmos. Environ., 37(SUPPL. 2), 197–219, doi:10.1016/S1352-2310(03)00391-1, 2003.
- 741 Balakrishnan, K., Dey, S., Gupta, T., Dhaliwal, R. S., Brauer, M., Cohen, A. J., Stanaway, J. D., Beig, G.,
- 742 Joshi, T. K., Aggarwal, A. N., Sabde, Y., Sadhu, H., Frostad, J., Causey, K., Godwin, W., Shukla, D. K.,
- 743 Kumar, G. A., Varghese, C. M., Muraleedharan, P., Agrawal, A., Anjana, R. M., Bhansali, A., Bhardwaj,
- 744 D., Burkart, K., Cercy, K., Chakma, J. K., Chowdhury, S., Christopher, D. J., Dutta, E., Furtado, M.,
- 745 Ghosh, S., Ghoshal, A. G., Glenn, S. D., Guleria, R., Gupta, R., Jeemon, P., Kant, R., Kant, S., Kaur, T.,
- 746 Koul, P. A., Krish, V., Krishna, B., Larson, S. L., Madhipatla, K., Mahesh, P. A., Mohan, V.,
- 747 Mukhopadhyay, S., Mutreja, P., Naik, N., Nair, S., Nguyen, G., Odell, C. M., Pandian, J. D.,
- 748 Prabhakaran, D., Prabhakaran, P., Roy, A., Salvi, S., Sambandam, S., Saraf, D., Sharma, M.,
- 749 Shrivastava, A., Singh, V., Tandon, N., Thomas, N. J., Torre, A., Xavier, D., Yadav, G., Singh, S.,
- 750 Shekhar, C., Vos, T., Dandona, R., Reddy, K. S., Lim, S. S., Murray, C. J. L., Venkatesh, S. and Dandona,
- 751 L.: The impact of air pollution on deaths, disease burden, and life expectancy across the states of
- 752 India: the Global Burden of Disease Study 2017, Lancet Planet. Heal., 3(1), e26–e39,
- 753 doi:10.1016/S2542-5196(18)30261-4, 2019.

754 Bhandari, S., Gani, S., Patel, K., Wang, D. S., Soni, P., Arub, Z., Habib, G., Apte, J. S. and Hildebrandt

Ruiz, L.: Sources and atmospheric dynamics of organic aerosol in New Delhi, India: Insights from

756 receptor modeling, Atmos. Chem. Phys., 20(2), 735–752, doi:10.5194/acp-20-735-2020, 2020.

Borbon, A., Fontaine, H., Veillerot, M., Locoge, N., Galloo, J. C. and Guillermo, R.: An investigation
into the traffic-related fraction of isoprene at an urban location, Atmos. Environ., 35(22), 3749–3760,
doi:10.1016/S1352-2310(01)00170-4, 2001.

760 Brüggemann, M., van Pinxteren, D., Wang, Y., Yu, J. Z. and Herrmann, H.: Quantification of known

761 and unknown terpenoid organosulfates in PM10 using untargeted LC–HRMS/MS: contrasting

summertime rural Germany and the North China Plain, Environ. Chem., 16(5), 333,

763 doi:10.1071/EN19089, 2019.

Brüggemann, M., Xu, R., Tilgner, A., Kwong, K. C., Mutzel, A., Poon, H. Y., Otto, T., Schaefer, T.,
Poulain, L., Chan, M. N. and Herrmann, H.: Organosulfates in Ambient Aerosol: State of Knowledge
and Future Research Directions on Formation, Abundance, Fate, and Importance, Environ. Sci.
Technol., 54(7), 3767–3782, doi:10.1021/acs.est.9b06751, 2020a.

Brüggemann, M., Riva, M., Perrier, S., Poulain, L., George, C. and Herrmann, H.: Overestimation of
 Monoterpene Organosulfate Abundance in Aerosol Particles by Sampling in the Presence of SO2,

770 Environ. Sci. Technol. Lett., 8, 206–211, doi:10.1021/acs.estlett.0c00814, 2020b.

771 Bryant, D. J., Dixon, W. J., Hopkins, J. R., Dunmore, R. E., Pereira, K. L., Shaw, M., Squires, F. A.,

772 Bannan, T. J., Mehra, A., Worrall, S. D., Bacak, A., Coe, H., Percival, C. J., Whalley, L. K., Heard, D. E.,

Slater, E. J., Ouyang, B., Cui, T., Surratt, J. D., Liu, D., Shi, Z., Harrison, R., Sun, Y., Xu, W., Lewis, A. C.,

Lee, J. D., Rickard, A. R. and Hamilton, J. F.: Strong anthropogenic control of secondary organic

aerosol formation from isoprene in Beijing, Atmos. Chem. Phys., 20(12), 7531–7552,

776 doi:10.5194/acp-20-7531-2020, 2020.

777 Bryant, D. J., Elzein, A., Newland, M., White, E., Swift, S., Watkins, A., Deng, W., Song, W., Wang, S.,

778 Zhang, Y., Wang, X., Rickard, A. R. and Hamilton, J. F.: Importance of Oxidants and Temperature in

the Formation of Biogenic Organosulfates and Nitrooxy Organosulfates, ACS Earth Sp. Chem.,

780 acsearthspacechem.1c00204, doi:10.1021/ACSEARTHSPACECHEM.1C00204, 2021.

781 Budisulistiorini, S. H., Li, X., Bairai, S. T., Renfro, J., Liu, Y., Liu, Y. J., McKinney, K. A., Martin, S. T.,

782 McNeill, V. F., Pye, H. O. T., Nenes, A., Neff, M. E., Stone, E. A., Mueller, S., Knote, C., Shaw, S. L.,

783 Zhang, Z., Gold, A. and Surratt, J. D.: Examining the effects of anthropogenic emissions on isoprene-

784 derived secondary organic aerosol formation during the 2013 Southern Oxidant and Aerosol Study

785 (SOAS) at the Look Rock, Tennessee ground site, Atmos. Chem. Phys., 15(15), 8871–8888,

786 doi:10.5194/acp-15-8871-2015, 2015.

Cash, J. M., Langford, B., Di Marco, C., Mullinger, N. J., Allan, J., Reyes-Villegas, E., Joshi, R., Heal, M.
R., Acton, W. J. F., Hewitt, C. N., Misztal, P. K., Drysdale, W., Mandal, T. K., Gadi, R., Gurjar, B. R. and
Nemitz, E.: Seasonal analysis of submicron aerosol in Old Delhi using high-resolution aerosol mass
spectrometry: chemical characterisation, source apportionment and new marker identification,
Atmos. Chem. Phys., 21(13), 10133–10158, doi:10.5194/ACP-21-10133-2021, 2021a.

792 Cash, J. M., Langford, B., Di Marco, C., Mullinger, N. J., Allan, J., Reyes-Villegas, E., Joshi, R., Heal, M.

R., Acton, W. J. F., Hewitt, C. N., Misztal, P. K., Drysdale, W., Mandal, T. K., Shivani, Gadi, R., Gurjar, B.

R. and Nemitz, E.: Seasonal analysis of submicron aerosol in Old Delhi using high-resolution aerosol

795 mass spectrometry: Chemical characterisation, source apportionment and new marker

796 identification, Atmos. Chem. Phys., 21(13), 10133–10158, doi:10.5194/ACP-21-10133-2021, 2021b.

797 Chan, M. N., Surratt, J. D., Chan, A. W. H., Schilling, K., Offenberg, J. H., Lewandowski, M., Edney, E.

798 O., Kleindienst, T. E., Jaoui, M., Edgerton, E. S., Tanner, R. L., Shaw, S. L., Zheng, M., Knipping, E. M.

and Seinfeld, J. H.: Influence of aerosol acidity on the chemical composition of Secondary Organic

- Aerosol from β-caryophyllene, Atmos. Chem. Phys. Discuss., 10(11), 29249–29289,
 doi:10.5194/acpd-10-29249-2010, 2010.
- 802 Chen, Y., Xu, L., Humphry, T., Hettiyadura, A. P. S., Ovadnevaite, J., Huang, S., Poulain, L., Schroder, J.
- 803 C., Campuzano-Jost, P., Jimenez, J. L., Herrmann, H., O'Dowd, C., Stone, E. A. and Ng, N. L.: Response
- 804 of the Aerodyne Aerosol Mass Spectrometer to Inorganic Sulfates and Organosulfur Compounds:
- Applications in Field and Laboratory Measurements, Environ. Sci. Technol., 53(9), 5176–5186,
- 806 doi:10.1021/ACS.EST.9B00884/ASSET/IMAGES/MEDIUM/ES-2019-00884R_0003.GIF, 2019.
- Chen, Y., Zhang, Y., T. Lambe, A., Xu, R., Lei, Z., E. Olson, N., Zhang, Z., Szalkowski, T., Cui, T., Vizuete,
 W., Gold, A., J. Turpin, B., P Ault, A., Nin Chan, M. and D. Surratt, J.: Heterogeneous Hydroxyl Radical
 Oxidation of Isoprene Epoxydiol-Derived Methyltetrol Sulfates: Plausible Formation Mechanisms of
 Previously Unexplained Organosulfates in Ambient Fine Aerosols, Environ. Sci. & amp; Technol. Lett.,
 0(ja), doi:10.1021/acs.estlett.0c00276, 2020.
- 812 Cheng, X., Li, H., Zhang, Y., Li, Y., Zhang, W., Wang, X., Bi, F., Zhang, H., Gao, J., Chai, F., Lun, X., Chen,
- 813 Y. and Lv, J.: Atmospheric isoprene and monoterpenes in a typical urban area of Beijing: Pollution
- characterization, chemical reactivity and source identification, J. Environ. Sci., 71, 150–167,
 doi:10.1016/J.JES.2017.12.017, 2018.
- Chowdhury, Z., Zheng, M., Cass, G. R., Sheesley, R. J., Schauer, J. J., Salmon, L. G. and Russell, A. G.:
 Source apportionment and characterization of ambient fine particles in Delhi, in Symposium on Air
 Quality Measurement Methods and Technology 2004, pp. 13–24., 2004.
- 819 Coggon, M. M., Gilman, J., McDonald, B., Gkatzelis, G., Ortega, J. V., Peischl, J., Aikin, K. C., Warneke,
- 820 C., Coggon, M. M., Gilman, J., McDonald, B., Gkatzelis, G., Ortega, J. V., Peischl, J., Aikin, K. C. and
- 821 Warneke, C.: Significant anthropogenic monoterpene emissions from fragrances and other
- 822 consumer products in New York City., AGUFM, 2018, A32E-08 [online] Available from:
- https://ui.adsabs.harvard.edu/abs/2018AGUFM.A32E..08C/abstract (Accessed 26 August 2021),
 2018.
- Darer, A. I., Cole-Filipiak, N. C., O'Connor, A. E. and Elrod, M. J.: Formation and stability of
- atmospherically relevant isoprene-derived organosulfates and organonitrates, Environ. Sci. Technol.,
 45(5), 1895–1902, doi:10.1021/es103797z, 2011.
- Ding, J., Zhao, P., Su, J., Dong, Q., Du, X. and Zhang, Y.: Aerosol pH and its driving factors in Beijing,
 Atmos. Chem. Phys., 19(12), 7939–7954, doi:10.5194/ACP-19-7939-2019, 2019.
- Brozd, G. T., Woo, J. L. and McNeill, V. F.: Self-limited uptake of α-pinene oxide to acidic aerosol: The
 effects of liquid-liquid phase separation and implications for the formation of secondary organic
- aerosol and organosulfates from epoxides, Atmos. Chem. Phys., 13(16), 8255–8263,
- 833 doi:10.5194/acp-13-8255-2013, 2013.
- Bu, Z., He, K., Cheng, Y., Duan, F., Ma, Y., Liu, J., Zhang, X., Zheng, M. and Weber, R.: A yearlong study
 of water-soluble organic carbon in Beijing I: Sources and its primary vs. secondary nature, Atmos.
 Environ., 92, 514–521, doi:10.1016/j.atmosenv.2014.04.060, 2014.
- 837 Eddingsaas, N. C., Loza, C. L., Yee, L. D., Seinfeld, J. H. and Wennberg, P. O.: α-pinene photooxidation
- under controlled chemical conditions-Part 1: Gas-phase composition in low-and high-NO
- 839 xenvironments, Atmos. Chem. Phys., 12(14), 6489–6504, doi:10.5194/acp-12-6489-2012, 2012a.
- 840 Eddingsaas, N. C., Loza, C. L., Yee, L. D., Chan, M., Schilling, K. A., Chhabra, P. S., Seinfeld, J. H. and
- 841 Wennberg, P. O.: α-pinene photooxidation under controlled chemical conditions-Part 2: SOA yield
- and composition in low-and high-NO x environments, Atmos. Chem. Phys., 12(16), 7413–7427,
- 843 doi:10.5194/acp-12-7413-2012, 2012b.

844 Elser, M., Huang, R. J., Wolf, R., Slowik, J. G., Wang, Q., Canonaco, F., Li, G., Bozzetti, C., Daellenbach, 845 K. R., Huang, Y., Zhang, R., Li, Z., Cao, J., Baltensperger, U., El-Haddad, I. and André, P.: New insights 846 into PM2.5 chemical composition and sources in two major cities in China during extreme haze 847 events using aerosol mass spectrometry, Atmos. Chem. Phys., 16(5), 3207-3225, doi:10.5194/ACP-848 16-3207-2016, 2016. 849 Elzein, A., Stewart, G. J., Swift, S. J., Nelson, B. S., Crilley, L. R., Alam, M. S., Reyes-Villegas, E., Gadi, 850 R., Harrison, R. M., Hamilton, J. F. and Lewis, A. C.: A comparison of PM2.5-bound polycyclic 851 aromatic hydrocarbons in summer Beijing (China) and Delhi (India), Atmos. Chem. Phys., 20(22), 852 14303-14319, doi:10.5194/ACP-20-14303-2020, 2020. 853 Galloway, M. M., Chhabra, P. S., Chan, A. W. H., Surratt, J. D., Flagan, R. C., Seinfeld, J. H. and 854 Keutsch, F. N.: Glyoxal uptake on ammonium sulphate seed aerosol: Reaction products and 855 reversibility of uptake under dark and irradiated conditions, Atmos. Chem. Phys., 9(10), 3331–3345, 856 doi:10.5194/acp-9-3331-2009, 2009. 857 Gani, S., Bhandari, S., Seraj, S., Wang, D. S., Patel, K., Soni, P., Arub, Z., Habib, G., Hildebrandt Ruiz, L. 858 and Apte, J. S.: Submicron aerosol composition in the world's most polluted megacity: the Delhi Aerosol Supersite study, Atmos. Chem. Phys., 19(10), 6843-6859, doi:10.5194/acp-19-6843-2019, 859 860 2019. 861 Gaston, C. J., Riedel, T. P., Zhang, Z., Gold, A., Surratt, J. D. and Thornton, J. A.: Reactive Uptake of an 862 Isoprene-Derived Epoxydiol to Submicron Aerosol Particles, Environ. Sci. Technol., 48(19), 11178-863 11186, doi:10.1021/es5034266, 2014. Gkatzelis, G. I., Coggon, M. M., McDonald, B. C., Peischl, J., Gilman, J. B., Aikin, K. C., Robinson, M. A., 864 865 Canonaco, F., Prevot, A. S. H., Trainer, M. and Warneke, C.: Observations Confirm that Volatile 866 Chemical Products Are a Major Source of Petrochemical Emissions in U.S. Cities, Environ. Sci. 867 Technol., 55(8), 4332-4343, doi:10.1021/ACS.EST.0C05471/SUPPL_FILE/ES0C05471_SI_001.PDF, 868 2021. 869 Glasius, M., Bering, M. S., Yee, L. D., de Sá, S. S., Isaacman-VanWertz, G., Wernis, R. A., Barbosa, H. 870 M. J., Alexander, M. L., Palm, B. B., Hu, W., Campuzano-Jost, P., Day, D. A., Jimenez, J. L., Shrivastava, 871 M., Martin, S. T. and Goldstein, A. H.: Organosulfates in aerosols downwind of an urban region in 872 central Amazon, Environ. Sci. Process. Impacts, 20(11), 1546–1558, doi:10.1039/C8EM00413G, 2018. 873 Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K. and Wang, X.: 874 The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended 875 and updated framework for modeling biogenic emissions, Geosci. Model Dev., 5(6), 1471–1492, doi:10.5194/gmd-5-1471-2012, 2012. 876 877 Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M., Dommen, J., 878 Donahue, N. M., George, C., Goldstein, A. H., Hamilton, J. F., Herrmann, H., Hoffmann, T., linuma, Y., Jang, M., Jenkin, M. E., Jimenez, J. L., Kiendler-Scharr, A., Maenhaut, W., McFiggans, G., Mentel, T. F., 879 Monod, A., Prévôt, A. S. H., Seinfeld, J. H., Surratt, J. D., Szmigielski, R. and Wildt, J.: The formation, 880 881 properties and impact of secondary organic aerosol: current and emerging issues, Atmos. Chem. 882 Phys., 9(14), 5155–5236, doi:10.5194/acp-9-5155-2009, 2009. 883 Hama, S. M. L., Kumar, P., Harrison, R. M., Bloss, W. J., Khare, M., Mishra, S., Namdeo, A., Sokhi, R., 884 Goodman, P. and Sharma, C.: Four-year assessment of ambient particulate matter and trace gases in 885 the Delhi-NCR region of India, Sustain. Cities Soc., 54, doi:10.1016/j.scs.2019.102003, 2020. Hamilton, J. F., Bryant, D. J., Edwards, P. M., Ouyang, B., Bannan, T. J., Mehra, A., Mayhew, A. W., 886 887 Hopkins, J. R., Dunmore, R. E., Squires, F. A., Lee, J. D., Newland, M. J., Worrall, S. D., Bacak, A., Coe, 888 H., Whalley, L. K., Heard, D. E., Slater, E. J., Jones, R. L., Cui, T., Surratt, J. D., Reeves, C. E., Mills, G. P.,

889 Grimmond, S., Sun, Y., Xu, W., Shi, Z. and Rickard, A. R.: Key Role of NO3 Radicals in the Production

- of Isoprene Nitrates and Nitrooxyorganosulfates in Beijing, Environ. Sci. Technol., 55(2), 842–853,
 doi:10.1021/acs.est.0c05689, 2021.
- Hatch, L. E., Jen, C. N., Kreisberg, N. M., Selimovic, V., Yokelson, R. J., Stamatis, C., York, R. A., Foster,
- 893 D., Stephens, S. L., Goldstein, A. H. and Barsanti, K. C.: Highly Speciated Measurements of Terpenoids
- Emitted from Laboratory and Mixed-Conifer Forest Prescribed Fires, Environ. Sci. Technol., 53(16),
 9418–9428, doi:10.1021/ACS.EST.9B02612, 2019.
- 896 Hettiyadura, A. P. S., Al-Naiema, I. M., Hughes, D. D., Fang, T. and Stone, E. A.: Organosulfates in
- Atlanta, Georgia: anthropogenic influences on biogenic secondary organic aerosol formation, Atmos.
 Chem. Phys., 19(5), 3191–3206, doi:10.5194/acp-19-3191-2019, 2019.
- Hoffmann, T., Odum, J. R., Bowman, F., Collins, D., Klockow, D., Flagan, R. C. and Seinfeld, J. H.:
 Formation of organic aerosols from the oxidation of biogenic hydrocarbons, J. Atmos. Chem., 26(2),
- 901 189–222, doi:10.1023/A:1005734301837, 1997.
- Hoyle, C. R., Boy, M., Donahue, N. M., Fry, J. L., Glasius, M., Guenther, A., Hallar, A. G., Huff Hartz, K.,
 Petters, M. D., Petäjä, T., Rosenoern, T. and Sullivan, A. P.: A review of the anthropogenic influence
 on biogenic secondary organic aerosol, Atmos. Chem. Phys., 11(1), 321–343, doi:10.5194/acp-11321-2011, 2011.
- Hsieh, H.-C., Ou-Yang, C.-F. and Wang, J.-L.: Revelation of Coupling Biogenic with Anthropogenic
 Isoprene by Highly Time-Resolved Observations, Aerosol Air Qual. Res., 17(3), 721–729,
 doi:10.4209/AAQR.2016.04.0133, 2017.
- Hu, W., Hu, M., Hu, W., Jimenez, J. L., Yuan, B., Chen, W., Wang, M., Wu, Y., Chen, C., Wang, Z., Peng,
 J., Zeng, L. and Shao, M.: Chemical composition, sources, and aging process of submicron aerosols in
 Beijing: Contrast between summer and winter, J. Geophys. Res. Atmos., 121(4), 1955–1977,
- 912 doi:10.1002/2015JD024020, 2016.
- Huang, Z., Zhang, Y., Yan, Q., Zhang, Z. and Wang, X.: Real-time monitoring of respiratory absorption
 factors of volatile organic compounds in ambient air by proton transfer reaction time-of-flight mass
 spectrometry, J. Hazard. Mater., 320, 547–555, doi:10.1016/J.JHAZMAT.2016.08.064, 2016.
- 916 linuma, Y., Müller, C., Berndt, T., Böge, O., Claeys, M. and Herrmann, H.: Evidence for the existence
 917 of organosulfates from β-pinene ozonolysis in ambient secondary organic aerosol, Environ. Sci.
 918 Technol., 41(19), 6678–6683, doi:10.1021/es070938t, 2007.
- Javed, M., Bashir, M. and Zaineb, S.: Analysis of daily and seasonal variation of fine particulate
 matter (PM2.5) for five cities of China, Environ. Dev. Sustain., 1–29, doi:10.1007/s10668-020-011591, 2021.
- 922 Kanawade, V. P., Srivastava, A. K., Ram, K., Asmi, E., Vakkari, V., Soni, V. K., Varaprasad, V. and
- 923 Sarangi, C.: What caused severe air pollution episode of November 2016 in New Delhi?, Atmos.
- 924 Environ., 222, doi:10.1016/j.atmosenv.2019.117125, 2020.
- Kashyap, P., Kumar, A., Kumar, R. P. and Kumar, K.: Biogenic and anthropogenic isoprene emissions
 in the subtropical urban atmosphere of Delhi, Atmos. Pollut. Res., 10(5), 1691–1698,
 doi:10.1016/j.apr.2019.07.004, 2019.
- 928 Khan, M. A. H., Schlich, B.-L., Jenkin, M. E., Shallcross, B. M. A., Moseley, K., Walker, C., Morris, W. C.,
- 929 Derwent, R. G., Percival, C. J. and Shallcross, D. E.: A Two-Decade Anthropogenic and Biogenic
- 930 Isoprene Emissions Study in a London Urban Background and a London Urban Traffic Site, Atmos.
- 931 2018, Vol. 9, Page 387, 9(10), 387, doi:10.3390/ATMOS9100387, 2018a.
- 932 Khan, M. A. H., Schlich, B. L., Jenkin, M. E., Shallcross, B. M. A., Moseley, K., Walker, C., Morris, W. C.,
- 933 Derwent, R. G., Percival, C. J. and Shallcross, D. E.: A Two-Decade Anthropogenic and Biogenic

- 934 Isoprene Emissions Study in a London Urban Background and a London Urban Traffic Site, Atmos. 935 2018, Vol. 9, Page 387, 9(10), 387, doi:10.3390/ATMOS9100387, 2018b.
- 936 Kirillova, E. N., Sheesley, R. J., Andersson, A. and Gustafsson, Ö.: Natural abundance 13C and 14C
- 937 analysis of water-soluble organic carbon in atmospheric aerosols, Anal. Chem., 82(19), 7973–7978, 938 doi:10.1021/ac1014436, 2010.

939 Kirillova, E. N., Andersson, A., Sheesley, R. J., Kruså, M., Praveen, P. S., Budhavant, K., Safai, P. D., 940 Rao, P. S. P. and Gustafsson, Ö.: ¹³ C- and ¹⁴ C-based study of sources and atmospheric processing of 941 water-soluble organic carbon (WSOC) in South Asian aerosols, J. Geophys. Res. Atmos., 118(2), 614-942 626, doi:10.1002/jgrd.50130, 2013.

943 Kirillova, E. N., Andersson, A., Tiwari, S., Srivastava, A. K., Bisht, D. S. and Gustafsson, Ö.: Water-944 soluble organic carbon aerosols during a full New Delhi winter: Isotope-based source apportionment 945 and optical properties, J. Geophys. Res. Atmos., 119(6), 3476–3485, doi:10.1002/2013JD020041, 946 2014.

947 Klein, F., Farren, N. J., Bozzetti, C., Daellenbach, K. R., Kilic, D., Kumar, N. K., Pieber, S. M., Slowik, J. 948 G., Tuthill, R. N., Hamilton, J. F., Baltensperger, U., Prévôt, A. S. H. and El Haddad, I.: Indoor terpene 949 emissions from cooking with herbs and pepper and their secondary organic aerosol production potential, Sci. Reports 2016 61, 6(1), 1–7, doi:10.1038/srep36623, 2016. 950

951 Kleindienst, T. E., Edney, E. O., Lewandowski, M., Offenberg, J. H. and Jaoui, M.: Secondary Organic 952 Carbon and Aerosol Yields from the Irradiations of Isoprene and α -Pinene in the Presence of NO $_{x}$ 953 and SO 2, Environ. Sci. Technol., 40(12), 3807–3812, doi:10.1021/es052446r, 2006.

954 Kourtchev, I., Godoi, R. H. M., Connors, S., Levine, J. G., Archibald, A. T., Godoi, A. F. L., Paralovo, S. 955 L., Barbosa, C. G. G., Souza, R. A. F., Manzi, A. O., Seco, R., Sjostedt, S., Park, J. H., Guenther, A., Kim, 956 S., Smith, J., Martin, S. T. and Kalberer, M.: Molecular composition of organic aerosols in central 957 Amazonia: An ultra-high-resolution mass spectrometry study, Atmos. Chem. Phys., 16(18), 11899-958 11913, doi:10.5194/acp-16-11899-2016, 2016.

959 Kristensen, K., Enggrob, K. L., King, S. M., Worton, D. R., Platt, S. M., Mortensen, R., Rosenoern, T., 960 Surratt, J. D., Bilde, M., Goldstein, A. H. and Glasius, M.: Formation and occurrence of dimer esters of 961 pinene oxidation products in atmospheric aerosols, Atmos. Chem. Phys., 13(7), 3763–3776, 962 doi:10.5194/acp-13-3763-2013, 2013.

963 Kumar, P., Kumar, S. and Yadav, S.: Seasonal variations in size distribution, water-soluble ions, and 964 carbon content of size-segregated aerosols over New Delhi, Environ. Sci. Pollut. Res., 25(6), 6061-965 6078, doi:10.1007/S11356-017-0954-6, 2018.

966 Landrigan, P. J., Fuller, R., Acosta, N. J. R., Adeyi, O., Arnold, R., Basu, N. (Nil), Baldé, A. B., Bertollini, 967 R., Bose-O'Reilly, S., Boufford, J. I., Breysse, P. N., Chiles, T., Mahidol, C., Coll-Seck, A. M., Cropper, M. 968 L., Fobil, J., Fuster, V., Greenstone, M., Haines, A., Hanrahan, D., Hunter, D., Khare, M., Krupnick, A., 969 Lanphear, B., Lohani, B., Martin, K., Mathiasen, K. V, McTeer, M. A., Murray, C. J. L., Ndahimananjara, 970 J. D., Perera, F., Potočnik, J., Preker, A. S., Ramesh, J., Rockström, J., Salinas, C., Samson, L. D., 971 Sandilya, K., Sly, P. D., Smith, K. R., Steiner, A., Stewart, R. B., Suk, W. A., van Schayck, O. C. P., 972 Yadama, G. N., Yumkella, K. and Zhong, M.: The Lancet Commission on pollution and health, Lancet, 973 391(10119), 462–512, doi:10.1016/S0140-6736(17)32345-0, 2018. 974 Lanz, V. A., Prevot, A. S. H., Alfarra, M. R., Weimer, S., Mohr, C., Decarlo, P. F., Gianini, M. F. D.,

975 Hueglin, C., Schneider, J., Favez, O., D'Anna, B., George, C. and Baltensperger, U.: Characterization of

976 aerosol chemical composition with aerosol mass spectrometry in Central Europe: An overview, Atmos. Chem. Phys., 10(21), 10453-10471, doi:10.5194/ACP-10-10453-2010, 2010. 977

978 Lee, B. H., Mohr, C., Lopez-Hilfiker, F. D., Lutz, A., Hallquist, M., Lee, L., Romer, P., Cohen, R. C., Iyer,

979 S., Kurtén, T., Hu, W., Day, D. A., Campuzano-Jost, P., Jimenez, J. L., Xu, L., Ng, N. L., Guo, H., Weber, 980 R. J., Wild, R. J., Brown, S. S., Koss, A., de Gouw, J., Olson, K., Goldstein, A. H., Seco, R., Kim, S., 981 McAvey, K., Shepson, P. B., Starn, T., Baumann, K., Edgerton, E. S., Liu, J., Shilling, J. E., Miller, D. O., 982 Brune, W., Schobesberger, S., D'Ambro, E. L. and Thornton, J. A.: Highly functionalized organic 983 nitrates in the southeast United States: Contribution to secondary organic aerosol and reactive 984 nitrogen budgets., Proc. Natl. Acad. Sci. U. S. A., 113(6), 1516–21, doi:10.1073/pnas.1508108113, 985 2016. 986 Liao, J., Froyd, K. D., Murphy, D. M., Keutsch, F. N., Yu, G., Wennberg, P. O., St. Clair, J. M., Crounse, 987 J. D., Wisthaler, A., Mikoviny, T., Jimenez, J. L., Campuzano-Jost, P., Day, D. A., Hu, W., Ryerson, T. B., 988 Pollack, I. B., Peischl, J., Anderson, B. E., Ziemba, L. D., Blake, D. R., Meinardi, S. and Diskin, G.: 989 Airborne measurements of organosulfates over the continental U.S., J. Geophys. Res., 120(7), 2990-990 3005, doi:10.1002/2014JD022378, 2015. 991 Lin, Y. H., Zhang, Z., Docherty, K. S., Zhang, H., Budisulistiorini, S. H., Rubitschun, C. L., Shaw, S. L., 992 Knipping, E. M., Edgerton, E. S., Kleindienst, T. E., Gold, A. and Surratt, J. D.: Isoprene epoxydiols as 993 precursors to secondary organic aerosol formation: Acid-catalyzed reactive uptake studies with 994 authentic compounds, Environ. Sci. Technol., 46(1), 250–258, doi:10.1021/es202554c, 2012. 995 Lin, Y. H., Zhang, H., Pye, H. O. T., Zhang, Z., Marth, W. J., Park, S., Arashiro, M., Cui, T., 996 Budisulistiorini, S. H., Sexton, K. G., Vizuete, W., Xie, Y., Luecken, D. J., Piletic, I. R., Edney, E. O., 997 Bartolotti, L. J., Gold, A. and Surratt, J. D.: Epoxide as a precursor to secondary organic aerosol 998 formation from isoprene photooxidation in the presence of nitrogen oxides, Proc. Natl. Acad. Sci. U. 999 S. A., 110(17), 6718–6723, doi:10.1073/pnas.1221150110, 2013a. 1000 Lin, Y. H., Knipping, E. M., Edgerton, E. S., Shaw, S. L. and Surratt, J. D.: Investigating the influences of 1001 SO2 and NH3 levels on isoprene-derived secondary organic aerosol formation using conditional 1002 sampling approaches, Atmos. Chem. Phys., 13(16), 8457–8470, doi:10.5194/ACP-13-8457-2013, 1003 2013b. 1004 Lin, Y. H., Budisulistiorini, S. H., Chu, K., Siejack, R. A., Zhang, H., Riva, M., Zhang, Z., Gold, A., 1005 Kautzman, K. E. and Surratt, J. D.: Light-absorbing oligomer formation in secondary organic aerosol 1006 from reactive uptake of isoprene epoxydiols, Environ. Sci. Technol., 48(20), 12012–12021, 1007 doi:10.1021/es503142b, 2014. 1008 Mishra, A. K. and Sinha, V.: Emission drivers and variability of ambient isoprene, formaldehyde and 1009 acetaldehyde in north-west India during monsoon season, Environ. Pollut., 267, 115538, 1010 doi:10.1016/J.ENVPOL.2020.115538, 2020. 1011 Miyazaki, Y., Aggarwal, S. G., Singh, K., Gupta, P. K. and Kawamura, K.: Dicarboxylic acids and water-1012 soluble organic carbon in aerosols in New Delhi, India, in winter: Characteristics and formation 1013 processes, J. Geophys. Res. Atmos., 114(19), doi:10.1029/2009JD011790, 2009. 1014 Morales, A. C., Jayarathne, T., Slade, J. H., Laskin, A. and Shepson, P. B.: The production and 1015 hydrolysis of organic nitrates from OH radical oxidation of β -ocimene, Atmos. Chem. Phys., 21(1), 1016 129-145, doi:10.5194/ACP-21-129-2021, 2021. 1017 Mutzel, A., Rodigast, M., linuma, Y., Böge, O. and Herrmann, H.: Monoterpene SOA - Contribution of 1018 first-generation oxidation products to formation and chemical composition, Atmos. Environ., 130, 1019 136-144, doi:10.1016/j.atmosenv.2015.10.080, 2016. 1020 Nagar, P. K., Singh, D., Sharma, M., Kumar, A., Aneja, V. P., George, M. P., Agarwal, N. and Shukla, S. 1021 P.: Characterization of PM2.5 in Delhi: role and impact of secondary aerosol, burning of biomass, and 1022 municipal solid waste and crustal matter, Environ. Sci. Pollut. Res., 24(32), 25179-25189,

1023 doi:10.1007/s11356-017-0171-3, 2017.

1024 Nelson, B., Stewart, G., Drysdale, W., Newland, M., Vaughan, A., Dunmore, R., Edwards, P., Lewis, A., 1025 Hamilton, J., Acton, W. J. F., Hewitt, C. N., Crilley, L., Alam, M., Şahin, Ü., Beddows, D., Bloss, W., 1026 Slater, E., Whalley, L., Heard, D., Cash, J., Langford, B., Nemitz, E., Sommariva, R., Cox, S., Gadi, R., 1027 Gurjar, B., Hopkins, J., Rickard, A. and Lee, J.: In situ Ozone Production is highly sensitive to Volatile 1028 Organic Compounds in the Indian Megacity of Delhi, Atmos. Chem. Phys. Discuss., 1–36, 1029 doi:10.5194/ACP-2021-278, 2021. 1030 Nestorowicz, K., Jaoui, M., Rudzinski, K. J., Lewandowski, M., Kleindienst, T. E., Spólnik, G., 1031 Danikiewicz, W. and Szmigielski, R.: Chemical composition of isoprene SOA under acidic and non-1032 acidic conditions: effect of relative humidity, Atmos. Chem. Phys., 18(24), 18101-18121, 1033 doi:10.5194/acp-18-18101-2018, 2018. 1034 Newland, M. J., Bryant, D. J., Dunmore, R. E., Bannan, T. J., Joe, W., Langford, B., Hopkins, J. R., 1035 Squires, F. A., Dixon, W., Drysdale, W. S., Ivatt, P. D., Evans, M. J., Edwards, P. M., Whalley, L. K., 1036 Heard, D. E., Slater, E. J., Woodward-Massey, R., Ye, C., Mehra, A., Worrall, S. D., Bacak, A., Coe, H., 1037 Percival, C. J., Nicholas Hewitt, C., Lee, J. D., Cui, T., Surratt, J. D., Wang, X., Lewis, A. C., Rickard, A. R. 1038 and Hamilton, J. F.: Low-NO atmospheric oxidation pathways in a polluted megacity, Atmos. Chem. 1039 Phys., 21(3), 1613–1625, doi:10.5194/acp-21-1613-2021, 2021. 1040 Ng, N. L., Kwan, A. J., Surratt, J. D., Chan, A. W. H., Chhabra, P. S., Sorooshian, A., Pye, H. O. T., 1041 Crounse, J. D., Wennberg, P. O., Flagan, R. C. and Seinfeld, J. H.: Secondary organic aerosol (SOA) 1042 formation from reaction of isoprene with nitrate radicals (NO3), Atmos. Chem. Phys., 8(14), 4117-1043 4140, doi:10.5194/acp-8-4117-2008, 2008. 1044 Ng, N. L., Brown, S. S., Archibald, A. T., Atlas, E., Cohen, R. C., Crowley, J. N., Day, D. A., Donahue, N. 1045 M., Fry, J. L., Fuchs, H., Griffin, R. J., Guzman, M. I., Herrmann, H., Hodzic, A., Iinuma, Y., Jimenez, J. 1046 L., Kiendler-Scharr, A., Lee, B. H., Luecken, D. J., Mao, J., McLaren, R., Mutzel, A., Osthoff, H. D., 1047 Ouyang, B., Picquet-Varrault, B., Platt, U., Pye, H. O. T., Rudich, Y., Schwantes, R. H., Shiraiwa, M., 1048 Stutz, J., Thornton, J. A., Tilgner, A., Williams, B. J. and Zaveri, R. A.: Nitrate radicals and biogenic 1049 volatile organic compounds: oxidation, mechanisms, and organic aerosol, Atmos. Chem. Phys., 17(3), 1050 2103-2162, doi:10.5194/acp-17-2103-2017, 2017. 1051 Nguyen, T. B., Bateman, A. P., Bones, D. L., Nizkorodov, S. A., Laskin, J. and Laskin, A.: High-resolution 1052 mass spectrometry analysis of secondary organic aerosol generated by ozonolysis of isoprene, 1053 Atmos. Environ., 44(8), 1032–1042, doi:10.1016/J.ATMOSENV.2009.12.019, 2010. 1054 Nguyen, T. B., Bates, K. H., Crounse, J. D., Schwantes, R. H., Zhang, X., Kjaergaard, H. G., Surratt, J. D., 1055 Lin, P., Laskin, A., Seinfeld, J. H. and Wennberg, P. O.: Mechanism of the hydroxyl radical oxidation of 1056 methacryloyl peroxynitrate (MPAN) and its pathway toward secondary organic aerosol formation in 1057 the atmosphere, Phys. Chem. Chem. Phys., 17(27), 17914–17926, doi:10.1039/c5cp02001h, 2015. 1058 None, S., R, G., SK, S. and TK, M.: Seasonal variation, source apportionment and source attributed 1059 health risk of fine carbonaceous aerosols over National Capital Region, India, Chemosphere, 237, 1060 doi:10.1016/J.CHEMOSPHERE.2019.124500, 2019. 1061 Panopoulou, A., Liakakou, E., Sauvage, S., Gros, V., Locoge, N., Stavroulas, I., Bonsang, B., 1062 Gerasopoulos, E. and Mihalopoulos, N.: Yearlong measurements of monoterpenes and isoprene in a 1063 Mediterranean city (Athens): Natural vs anthropogenic origin, Atmos. Environ., 243, 117803, 1064 doi:10.1016/J.ATMOSENV.2020.117803, 2020. 1065 Panopoulou, A., Liakakou, E., Sauvage, S., Gros, V., Locoge, N., Bonsang, B., Salameh, T., 1066 Gerasopoulos, E. and Mihalopoulos, N.: Variability and sources of non-methane hydrocarbons at a Mediterranean urban atmosphere: The role of biomass burning and traffic emissions, Sci. Total 1067 1068 Environ., 800, 149389, doi:10.1016/J.SCITOTENV.2021.149389, 2021.

1069 Passananti, M., Kong, L., Shang, J., Dupart, Y., Perrier, S., Chen, J., Donaldson, D. J. and George, C.:

1070 Organosulfate Formation through the Heterogeneous Reaction of Sulfur Dioxide with Unsaturated
 1071 Fatty Acids and Long-Chain Alkenes, Angew. Chemie - Int. Ed., 55(35), 10336–10339,

1072 doi:10.1002/anie.201605266, 2016.

Paulot, F., Crounse, J. D., Kjaergaard, H. G., Kurten, A., St. Clair, J. M., Seinfeld, J. H. and Wennberg, P.
O.: Unexpected Epoxide Formation in the Gas-Phase Photooxidation of Isoprene, Science (80-.).,
325(5941), 730–733, doi:10.1126/science.1172910, 2009.

Rattanavaraha, W., Chu, K., Budisulistiorini, S. H., Riva, M., Lin, Y.-H., Edgerton, E. S., Baumann, K.,
Shaw, S. L., Guo, H., King, L., Weber, R. J., Neff, M. E., Stone, E. A., Offenberg, J. H., Zhang, Z., Gold, A.
and Surratt, J. D.: Assessing the impact of anthropogenic pollution on isoprene-derived secondary
organic aerosol formation in PM<sub&gt;2.5&lt;/sub&gt; collected from the
Birmingham, Alabama, ground site during the 2013 Southern Oxidant and Aerosol Study, Atmos.
Chem. Phys., 16(8), 4897–4914, doi:10.5194/acp-16-4897-2016, 2016a.

Rattanavaraha, W., Chu, K., Budisulistiorini, S. H., Riva, M., Lin, Y. H., Edgerton, E. S., Baumann, K.,
Shaw, S. L., Guo, H., King, L., Weber, R. J., Neff, M. E., Stone, E. A., Offenberg, J. H., Zhang, Z., Gold, A.
and Surratt, J. D.: Assessing the impact of anthropogenic pollution on isoprene-derived secondary
organic aerosol formation in PM2.5 collected from the Birmingham, Alabama, ground site during the
2013 Southern Oxidant and Aerosol Study, Atmos. Chem. Phys., 16(8), 4897–4914, doi:10.5194/acp16-4897-2016, 2016b.

Reyes-Villegas, E., Panda, U., Darbyshire, E., Cash, J. M., Joshi, R., Langford, B., Di Marco, C. F.,
Mullinger, N. J., Alam, M. S., Crilley, L. R., Rooney, D. J., Acton, W. J. F., Drysdale, W., Nemitz, E.,
Flynn, M., Voliotis, A., McFiggans, G., Coe, H., Lee, J., Hewitt, C. N., Heal, M. R., Gunthe, S. S., Mandal,
T. K., Gurjar, B. R., Shivani, Gadi, R., Singh, S., Soni, V. and Allan, J. D.: PM1 composition and source
apportionment at two sites in Delhi, India, across multiple seasons, Atmos. Chem. Phys., 21(15),
11655–11667, doi:10.5194/ACP-21-11655-2021, 2021.

1094 Riva, M., Da Silva Barbosa, T., Lin, Y.-H., Stone, E. A., Gold, A. and Surratt, J. D.: Chemical
1095 characterization of organosulfates in secondary organic aerosol derived from the photooxidation of
1096 alkanes, Atmos. Chem. Phys., 16(17), 11001–11018, doi:10.5194/acp-16-11001-2016, 2016a.

1097 Riva, M., Budisulistiorini, S. H., Zhang, Z. and Gold, A.: Chemical characterization of secondary
1098 organic aerosol constituents from isoprene ozonolysis in the presence of acidic aerosol, Atmos.
1099 Environ., 130, 5–13, doi:10.1016/J.ATMOSENV.2015.06.027, 2016b.

1100 Riva, M., Bell, D. M., Hansen, A. M. K., Drozd, G. T., Zhang, Z., Gold, A., Imre, D., Surratt, J. D., Glasius,

1101 M. and Zelenyuk, A.: Effect of Organic Coatings, Humidity and Aerosol Acidity on Multiphase

1102 Chemistry of Isoprene Epoxydiols, Environ. Sci. Technol., 50(11), 5580–5588,

1103 doi:10.1021/acs.est.5b06050, 2016c.

1104 Riva, M., Chen, Y., Zhang, Y., Lei, Z., Olson, N. E., Boyer, H. C., Narayan, S., Yee, L. D., Green, H. S., Cui, 1105 T., Zhang, Z., Baumann, K., Fort, M., Edgerton, E., Budisulistiorini, S. H., Rose, C. A., Ribeiro, I. O., e 1106 Oliveira, R. L., dos Santos, E. O., Machado, C. M. D., Szopa, S., Zhao, Y., Alves, E. G., de Sá, S. S., Hu, 1107 W., Knipping, E. M., Shaw, S. L., Duvoisin Junior, S., de Souza, R. A. F., Palm, B. B., Jimenez, J.-L., 1108 Glasius, M., Goldstein, A. H., Pye, H. O. T., Gold, A., Turpin, B. J., Vizuete, W., Martin, S. T., Thornton, 1109 J. A., Dutcher, C. S., Ault, A. P. and Surratt, J. D.: Increasing Isoprene Epoxydiol-to-Inorganic Sulfate 1110 Aerosol Ratio Results in Extensive Conversion of Inorganic Sulfate to Organosulfur Forms: 1111 Implications for Aerosol Physicochemical Properties, Environ. Sci. Technol., acs.est.9b01019, 1112 doi:10.1021/acs.est.9b01019, 2019.

1113 Saha, D., Soni, K., Mohanan, M. N. and Singh, M.: Long-term trend of ventilation coefficient over

1114 Delhi and its potential impacts on air quality, Remote Sens. Appl. Soc. Environ., 15, 100234,

1115 doi:10.1016/J.RSASE.2019.05.003, 2019.

1116 Sahu, L. K. and Saxena, P.: High time and mass resolved PTR-TOF-MS measurements of VOCs at an

- 1117 urban site of India during winter: Role of anthropogenic, biomass burning, biogenic and
- 1118 photochemical sources, Atmos. Res., 164–165, 84–94, doi:10.1016/J.ATMOSRES.2015.04.021, 2015.
- Sahu, L. K., Tripathi, N. and Yadav, R.: Contribution of biogenic and photochemical sources to 1119 1120 ambient VOCs during winter to summer transition at a semi-arid urban site in India, Environ. Pollut., 1121 229, 595-606, doi:10.1016/J.ENVPOL.2017.06.091, 2017.
- Sawlani, R., Agnihotri, R., Sharma, C., Patra, P. K., Dimri, A. P., Ram, K. and Verma, R. L.: The severe 1122 1123 Delhi SMOG of 2016: A case of delayed crop residue burning, coincident firecracker emissions, and 1124 atypical meteorology, Atmos. Pollut. Res., 10(3), 868–879, doi:10.1016/j.apr.2018.12.015, 2019.
- 1125 Schindelka, J., Iinuma, Y., Hoffmann, D. and Herrmann, H.: Sulfate radical-initiated formation of 1126 isoprene-derived organosulfates in atmospheric aerosols, Faraday Discuss., 165(0), 237–259, 1127 doi:10.1039/c3fd00042g, 2013.
- 1128 Schnell, J. L., Naik, V., Horowitz, L. W., Paulot, F., Mao, J., Ginoux, P., Zhao, M. and Ram, K.: Exploring 1129 the relationship between surface PM 2.5 and meteorology in Northern India, Atmos. Chem. Phys., 18(14), 10157–10175, doi:10.5194/acp-18-10157-2018, 2018. 1130

1131 Sharma, S. K. and Mandal, T. K.: Chemical composition of fine mode particulate matter (PM2.5) in an 1132 urban area of Delhi, India and its source apportionment, Urban Clim., 21, 106-122, 1133 doi:10.1016/j.uclim.2017.05.009, 2017.

1134 Sheesley, R. J., Kirillova, E., Andersson, A., Krusa, M., Praveen, P. S., Budhavant, K., Safai, P. D., Rao, 1135 P. S. P. and Gustafsson, O.: Year-round radiocarbon-based source apportionment of carbonaceous 1136 aerosols at two background sites in South Asia, J. Geophys. Res. Atmos., 117(10),

1137 doi:10.1029/2011JD017161, 2012.

1138 Simon, M., Dada, L., Heinritzi, M., Scholz, W., Stolzenburg, D., Fischer, L., Wagner, A., Kürten, A., 1139 Rörup, B., He, X.-C., Almeida, J., Baalbaki, R., Baccarini, A., Bauer, P., Beck, L., Bergen, A., Bianchi, F., 1140 Bräkling, S., Brilke, S., Caudillo, L., Chen, D., Chu, B., Dias, A., Draper, D., Duplissy, J., El Haddad, I.,

- 1141 Finkenzeller, H., Frege, C., Gonzalez-Carracedo, L., Gordon, H., Granzin, M., Hakala, J., Hofbauer, V.,
- 1142 Hoyle, C., Kim, C., Kong, W., Lamkaddam, H., Lee, C., Lehtipalo, K., Leiminger, M., Mai, H., Manninen, 1143 H., Marie, G., Marten, R., Mentler, B., Molteni, U., Nichman, L., Nie, W., Ojdanic, A., Onnela, A.,
- 1144 Partoll, E., Petäjä, T., Pfeifer, J., Philippov, M., Quéléver, L., Ranjithkumar, A., Rissanen, M.,
- 1145 Schallhart, S., Schobesberger, S., Schuchmann, S., Shen, J., Sipilä, M., Steiner, G., Stozhkov, Y.,
- 1146 Tauber, C., Tham, Y., Tomé, A., Vazquez-Pufleau, M., Vogel, A., Wagner, R., Wang, M., Wang, D.,
- 1147
- Wang, Y., Weber, S., Wu, Y., Xiao, M., Yan, C., Ye, P., Ye, Q., Zauner-Wieczorek, M., Zhou, X.,
- 1148 Baltensperger, U., Dommen, J., Flagan, R., Hansel, A., Kulmala, M., Volkamer, R., Winkler, P.,
- 1149 Worsnop, D., Donahue, N., Kirkby, J. and Curtius, J.: Molecular understanding of new-particle
- 1150 formation from alpha-pinene between & amp;#8722;50& amp;#8201;& amp;#176;C and
- 1151 25 °C, Atmos. Chem. Phys., (January), 1-42, doi:10.5194/acp-2019-1058, 1152 2020.
- 1153 Sindelarova, K., Granier, C., Bouarar, I., Guenther, A., Tilmes, S., Stavrakou, T., Müller, J. F., Kuhn, U., 1154 Stefani, P. and Knorr, W.: Global data set of biogenic VOC emissions calculated by the MEGAN model
- 1155 over the last 30 years, Atmos. Chem. Phys., 14(17), 9317–9341, doi:10.5194/ACP-14-9317-2014, 1156 2014.
- 1157 Singh, B. P., Kumar, K. and Jain, V. K.: Source identification and health risk assessment associated 1158 with particulate- and gaseous-phase PAHs at residential sites in Delhi, India, Air Qual. Atmos. Heal., doi:10.1007/S11869-021-01035-5, 2021. 1159
- 1160 Singh, D. P., Gadi, R. and Mandal, T. K.: Characterization of Gaseous and Particulate Polycyclic
- 1161 Aromatic Hydrocarbons in Ambient Air of Delhi, India, Polycycl. Aromat. Compd., 32(4), 556–579,

1162 doi:10.1080/10406638.2012.683230, 2012.

Sinha, V., Kumar, V. and Sarkar, C.: Chemical composition of pre-monsoon air in the Indo-Gangetic 1163 1164 Plain measured using a new air quality facility and PTR-MS: High surface ozone and strong influence of biomass burning, Atmos. Chem. Phys., 14(12), 5921–5941, doi:10.5194/acp-14-5921-2014, 2014. 1165 1166 Spolnik, G., Wach, P., Rudzinski, K. J., Skotak, K., Danikiewicz, W. and Szmigielski, R.: Improved 1167 UHPLC-MS/MS Methods for Analysis of Isoprene-Derived Organosulfates, Anal. Chem., 90(5), 3416-1168 3423, doi:10.1021/acs.analchem.7b05060, 2018. 1169 Stewart, G. J., Nelson, B. S., Acton, W. J. F., Vaughan, A. R., Farren, N. J., Hopkins, J. R., Ward, M. W., 1170 Swift, S. J., Arya, R., Mondal, A., Jangirh, R., Ahlawat, S., Yadav, L., Sharma, S. K., Yunus, S. S. M., 1171 Hewitt, C. N., Nemitz, E., Mullinger, N., Gadi, R., Sahu, L. K., Tripathi, N., Rickard, A. R., Lee, J. D., 1172 Mandal, T. K. and Hamilton, J. F.: Emissions of intermediate-volatility and semi-volatile organic 1173 compounds from domestic fuels used in Delhi, India, Atmos. Chem. Phys., 21(4), 2407-2426, 1174 doi:10.5194/ACP-21-2407-2021, 2021a. 1175 Stewart, G. J., Acton, W. J. F., Nelson, B. S., Vaughan, A. R., Hopkins, J. R., Arya, R., Mondal, A., 1176 Jangirh, R., Ahlawat, S., Yadav, L., Sharma, S. K., Dunmore, R. E., Yunus, S. S. M., Nicholas Hewitt, C., 1177 Nemitz, E., Mullinger, N., Gadi, R., Sahu, L. K., Tripathi, N., Rickard, A. R., Lee, J. D., Mandal, T. K. and Hamilton, J. F.: Emissions of non-methane volatile organic compounds from combustion of domestic 1178 1179 fuels in Delhi, India, Atmos. Chem. Phys., 21(4), 2383–2406, doi:10.5194/ACP-21-2383-2021, 2021b. 1180 Stewart, G. J., Nelson, B. S., Drysdale, W. S., Acton, W. J. F., Vaughan, A. R., Hopkins, J. R., Dunmore, 1181 R. E., Hewitt, C. N., Nemitz, E., Mullinger, N., Langford, B., Shivani, Reyes-Villegas, E., Gadi, R., 1182 Rickard, A. R., Lee, J. D. and Hamilton, J. F.: Sources of non-methane hydrocarbons in surface air in 1183 Delhi, India, Faraday Discuss., 226(0), 409–431, doi:10.1039/D0FD00087F, 2021c. 1184 Surratt, J. D., Murphy, S. M., Kroll, J. H., Ng, N. L., Hildebrandt, L., Sorooshian, A., Szmigielski, R., 1185 Vermeylen, R., Maenhaut, W., Claeys, M., Flagan, R. C. and Seinfeld, J. H.: Chemical composition of 1186 secondary organic aerosol formed from the photooxidation of isoprene, J. Phys. Chem. A, 110(31), 1187 9665-9690, doi:10.1021/jp061734m, 2006. 1188 Surratt, J. D., Kroll, J. H., Kleindienst, T. E., Edney, E. O., Claeys, M., Sorooshian, A., Ng, N. L., 1189 Offenberg, J. H., Lewandowski, M., Jaoui, M., Flagan, R. C. and Seinfeld, J. H.: Evidence for 1190 Organosulfates in Secondary Organic Aerosol, Environ. Sci. Technol., 41(2), 517–527, 1191 doi:10.1021/es062081q, 2007. 1192 Surratt, J. D., Gómez-González, Y., Chan, A. W. H., Vermeylen, R., Shahgholi, M., Kleindienst, T. E., 1193 Edney, E. O., Offenberg, J. H., Lewandowski, M., Jaoui, M., Maenhaut, W., Claeys, M., Flagan, R. C. 1194 and Seinfeld, J. H.: Organosulfate Formation in Biogenic Secondary Organic Aerosol, J. Phys. Chem. A, 1195 112(36), 8345-8378, doi:10.1021/jp802310p, 2008a. 1196 Surratt, J. D., Gómez-González, Y., Chan, A. W. H., Vermeylen, R., Shahgholi, M., Kleindienst, T. E., 1197 Edney, E. O., Offenberg, J. H., Lewandowski, M., Jaoui, M., Maenhaut, W., Claeys, M., Flagan, R. C. 1198 and Seinfeld, J. H.: Organosulfate Formation in Biogenic Secondary Organic Aerosol, J. Phys. Chem. A, 1199 112(36), 8345-8378, doi:10.1021/jp802310p, 2008b. 1200 Surratt, J. D., Chan, A. W. H., Eddingsaas, N. C., Chan, M., Loza, C. L., Kwan, A. J., Hersey, S. P., Flagan, 1201 R. C., Wennberg, P. O. and Seinfeld, J. H.: Reactive intermediates revealed in secondary organic 1202 aerosol formation from isoprene, Proc. Natl. Acad. Sci., 107(15), 6640-6645, 1203 doi:10.1073/pnas.0911114107, 2010. 1204

Szidat, S., Jenk, T. M., Gäggeler, H. W., Synal, H. A., Fisseha, R., Baltensperger, U., Kalberer, M.,
 Samburova, V., Wacker, L., Saurer, M., Schwikowski, M. and Hajdas, I.: Source apportionment of

1206 aerosols by 14C measurements in different carbonaceous particle fractions, in Radiocarbon, vol. 46,

- pp. 475–484, University of Arizona., 2004.
- 1207 1208 Takeuchi, M. and Ng, N. L.: Chemical composition and hydrolysis of organic nitrate aerosol formed 1209 from hydroxyl and nitrate radical oxidation of α -pinene and β -pinene, Atmos. Chem. Phys., 19(19), 1210 12749-12766, doi:10.5194/ACP-19-12749-2019, 2019. 1211 Wagner, P. and Kuttler, W.: Biogenic and anthropogenic isoprene in the near-surface urban 1212 atmosphere — A case study in Essen, Germany, Sci. Total Environ., 475, 104–115, 1213 doi:10.1016/J.SCITOTENV.2013.12.026, 2014. 1214 Wang, J. L., Chew, C., Chang, C. Y., Liao, W. C., Lung, S. C. C., Chen, W. N., Lee, P. J., Lin, P. H. and 1215 Chang, C. C.: Biogenic isoprene in subtropical urban settings and implications for air quality, Atmos. 1216 Environ., 79, 369-379, doi:10.1016/J.ATMOSENV.2013.06.055, 2013. 1217 Wang, X. K., Rossignol, S., Ma, Y., Yao, L., Wang, M. Y., Chen, J. M., George, C. and Wang, L.: 1218 Molecular characterization of atmospheric particulate organosulfates in three megacities at the 1219 middle and lower reaches of the Yangtze River, Atmos. Chem. Phys., 16(4), 2285–2298, 1220 doi:10.5194/acp-16-2285-2016, 2016. 1221 Wang, Y., Hu, M., Guo, S., Wang, Y., Zheng, J., Yang, Y., Zhu, W., Tang, R., Li, X., Liu, Y., Le Breton, M., 1222 Du, Z., Shang, D., Wu, Y., Wu, Z., Song, Y., Lou, S., Hallquist, M. and Yu, J.: The secondary formation 1223 of organosulfates under interactions between biogenic emissions and anthropogenic pollutants in 1224 summer in Beijing, Atmos. Chem. Phys., 18(14), 10693–10713, doi:10.5194/acp-18-10693-2018, 1225 2018a. 1226 Wang, Y., Hu, M., Guo, S., Wang, Y., Zheng, J., Yang, Y., Zhu, W., Tang, R., Li, X., Liu, Y., Le Breton, M., 1227 Du, Z., Shang, D., Wu, Y., Wu, Z., Song, Y., Lou, S., Hallquist, M. and Yu, J.: The secondary formation 1228 of organosulfates under interactions between biogenic emissions and anthropogenic pollutants in 1229 summer in Beijing, Atmos. Chem. Phys., 18(14), 10693–10713, doi:10.5194/acp-18-10693-2018, 1230 2018b. 1231 Wang, Y., Tong, R. and Yu, J. Z.: Chemical Synthesis of Multifunctional Air Pollutants: Terpene-1232 Derived Nitrooxy Organosulfates, Environ. Sci. Technol., acs.est.1c00348, 1233 doi:10.1021/acs.est.1c00348, 2021a. 1234 Wang, Y., Zhao, Y., Wang, Y., Yu, J. Z., Shao, J., Liu, P., Zhu, W., Cheng, Z., Li, Z., Yan, N. and Xiao, H.: 1235 Organosulfates in atmospheric aerosols in shanghai, china: Seasonal and interannual variability, 1236 origin, and formation mechanisms, Atmos. Chem. Phys., 21(4), 2959-2980, doi:10.5194/acp-21-1237 2959-2021, 2021b. 1238 Wennberg, P. O., Bates, K. H., Crounse, J. D., Dodson, L. G., McVay, R. C., Mertens, L. A., Nguyen, T. 1239 B., Praske, E., Schwantes, R. H., Smarte, M. D., St Clair, J. M., Teng, A. P., Zhang, X. and Seinfeld, J. H.: 1240 Gas-Phase Reactions of Isoprene and Its Major Oxidation Products, Chem. Rev., 118(7), 3337–3390, 1241 doi:10.1021/acs.chemrev.7b00439, 2018. 1242 WHO: WHO | Ambient air pollution, WHO, 2018.

1243 Wozniak, A. S., Bauer, J. E. and Dickhut, R. M.: Characteristics of water-soluble organic carbon 1244 associated with aerosol particles in the eastern United States, Atmos. Environ., 46, 181–188, 1245 doi:10.1016/j.atmosenv.2011.10.001, 2012.

1246 Xu, J., Song, S., Harrison, R. M., Song, C., Wei, L., Zhang, Q., Sun, Y., Lei, L., Zhang, C., Yao, X., Chen,

1247 D., Li, W., Wu, M., Tian, H., Luo, L., Tong, S., Li, W., Wang, J., Shi, G., Huangfu, Y., Tian, Y., Ge, B., Su,

- 1248 S., Peng, C., Chen, Y., Yang, F., Mihajlidi-Zelić, A., Đordević, D., Swift, S. J., Andrews, I., Hamilton, J. F.,
- 1249 Sun, Y., Kramawijaya, A., Han, J., Saksakulkrai, S., Baldo, C., Hou, S., Zheng, F., Daellenbach, K. R.,

1250 Yan, C., Liu, Y., Kulmala, M., Fu, P. and Shi, Z.: An interlaboratory comparison of aerosol inorganic ion

measurements by ion chromatography: Implications for aerosol pH estimate, Atmos. Meas. Tech.,
13(11), 6325–6341, doi:10.5194/AMT-13-6325-2020, 2020.

1253 Xu, L., Guo, H., Boyd, C. M., Klein, M., Bougiatioti, A., Cerully, K. M., Hite, J. R., Isaacman-VanWertz,

- 1254 G., Kreisberg, N. M., Knote, C., Olson, K., Koss, A., Goldstein, A. H., Hering, S. V., Gouw, J. de,
- Baumann, K., Lee, S.-H., Nenes, A., Weber, R. J. and Ng, N. L.: Effects of anthropogenic emissions on aerosol formation from isoprene and monoterpenes in the southeastern United States, Proc. Natl.

1257 Acad. Sci., 112(1), 37–42, doi:10.1073/PNAS.1417609112, 2015.

Yadav, A. K., Sarkar, S., Jyethi, D. S., Rawat, P., Aithani, D., Siddiqui, Z. and Khillare, P. S.: Fine
Particulate Matter Bound Polycyclic Aromatic Hydrocarbons and Carbonaceous Species in Delhi's
Atmosphere: Seasonal Variation, Sources, and Health Risk Assessment, Aerosol Sci. Eng. 2021 52,
5(2), 193–213, doi:10.1007/S41810-021-00094-6, 2021.

Yee, L. D., Isaacman-VanWertz, G., Wernis, R. A., Kreisberg, N. M., Glasius, M., Riva, M., Surratt, J. D.,
de Sá, S. S., Martin, S. T., Alexander, M. L., Palm, B. B., Hu, W., Campuzano-Jost, P., Day, D. A.,

Jimenez, J. L., Liu, Y., Misztal, P. K., Artaxo, P., Viegas, J., Manzi, A., de Souza, R. A. F., Edgerton, E. S.,

1265 Baumann, K. and Goldstein, A. H.: Natural and Anthropogenically Influenced Isoprene Oxidation in

1266 Southeastern United States and Central Amazon, Environ. Sci. Technol.,

1267 doi:10.1021/acs.est.0c00805, 2020.

Zhang, H., Yee, L. D., Lee, B. H., Curtis, M. P., Worton, D. R., Isaacman-VanWertz, G., Offenberg, J. H.,
Lewandowski, M., Kleindienst, T. E., Beaver, M. R., Holder, A. L., Lonneman, W. A., Docherty, K. S.,
Jaoui, M., Pye, H. O. T., Hu, W., Day, D. A., Campuzano-Jost, P., Jimenez, J. L., Guo, H., Weber, R. J.,
De Gouw, J., Koss, A. R., Edgerton, E. S., Brune, W., Mohr, C., Lopez-Hilfiker, F. D., Lutz, A., Kreisberg,
N. M., Spielman, S. R., Hering, S. V., Wilson, K. R., Thornton, J. A. and Goldstein, A. H.: Monoterpenes
are the largest source of summertime organic aerosol in the southeastern United States, Proc. Natl.
Acad. Sci. U. S. A., 115(9), 2038–2043, doi:10.1073/pnas.1717513115, 2018.

1275 Zhang, H., Zhang, Y., Huang, Z., Acton, W. J. F., Wang, Z., Nemitz, E., Langford, B., Mullinger, N.,

1276 Davison, B., Shi, Z., Liu, D., Song, W., Yang, W., Zeng, J., Wu, Z., Fu, P., Zhang, Q. and Wang, X.:

Vertical profiles of biogenic volatile organic compounds as observed online at a tower in Beijing, J.
Environ. Sci., 95, 33–42, doi:10.1016/J.JES.2020.03.032, 2020.

1279 Zhao, D., Schmitt, S. H., Wang, M., Acir, I. H., Tillmann, R., Tan, Z., Novelli, A., Fuchs, H., Pullinen, I.,
1280 Wegener, R., Rohrer, F., Wildt, J., Kiendler-Scharr, A., Wahner, A. and Mentel, T. F.: Effects of NOx
1281 and SO2 on the secondary organic aerosol formation from photooxidation of α-pinene and
1282 limonene, Atmos. Chem. Phys., 18(3), 1611–1628, doi:10.5194/acp-18-1611-2018, 2018.

Zhao, D. F., Kaminski, M., Schlag, P., Fuchs, H., Acir, I. H., Bohn, B., Häseler, R., Kiendler-Scharr, A.,
Rohrer, F., Tillmann, R., Wang, M. J., Wegener, R., Wildt, J., Wahner, A. and Mentel, T. F.: Secondary
organic aerosol formation from hydroxyl radical oxidation and ozonolysis of monoterpenes, Atmos.
Chem. Phys., 15(2), 991–1012, doi:10.5194/ACP-15-991-2015, 2015.

Zou, Y., Deng, X. J., Deng, T., Yin, C. Q. and Li, F.: One-year characterization and reactivity of isoprene
and its impact on surface ozone formation at a suburban site in Guangzhou, China, Atmosphere
(Basel)., 10(4), doi:10.3390/ATMOS10040201, 2019.